This content originally appeared on DEV Community and was authored by Envoy-VC
Join My Discord To download This Cheatsheet as PDF here
Python Cheatsheet
-
About
- Python Basics
- Math Operators
- Data Types
- String Concatenation and Replication
- Variables
- Comments
- The print() Function
- The input() Function
- The len() Function
- The str(), int(), and float() Functions
- Flow Control
- Comparison Operators
- Boolean evaluation
- Boolean Operators
- Mixing Boolean and Comparison Operators
- if Statements
- else Statements
- elif Statements
- while Loop Statements
- break Statements
- continue Statements
- for Loops and the range() Function
- For else statement
- Importing Modules
- Ending a Program Early with sys.exit()
- Functions
- Return Values and return Statements
- The None Value
- Keyword Arguments and print()
- Local and Global Scope
- The global Statement
- Exception Handling
- Basic exception handling
- Final code in exception handling
- Lists
- Getting Individual Values in a List with Indexes
- Negative Indexes
- Getting Sublists with Slices
- Getting a List’s Length with len()
- Changing Values in a List with Indexes
- List Concatenation and List Replication
- Removing Values from Lists with del Statements
- Using for Loops with Lists
- Looping Through Multiple Lists with zip()
- The in and not in Operators
- The Multiple Assignment Trick
- Augmented Assignment Operators
- Finding a Value in a List with the index() Method
- Adding Values to Lists with the append() and insert() Methods
- Removing Values from Lists with remove()
- Removing Values from Lists with pop()
- Sorting the Values in a List with the sort() Method
- Tuple Data Type
- Converting Types with the list() and tuple() Functions
- Dictionaries and Structuring Data
- The keys(), values(), and items() Methods
- Checking Whether a Key or Value Exists in a Dictionary
- The get() Method
- The setdefault() Method
- Pretty Printing
- Merge two dictionaries
- sets
- Initializing a set
- sets: unordered collections of unique elements
- set add() and update()
- set remove() and discard()
- set union()
- set intersection
- set difference
- set symetric_difference
- itertools Module
- accumulate()
- combinations()
- combinations_with_replacement()
- count()
- cycle()
- chain()
- compress()
- dropwhile()
- filterfalse()
- groupby()
- islice()
- permutations()
- product()
- repeat()
- starmap()
- takewhile()
- tee()
- zip_longest()
- Comprehensions
- List comprehension
- Set comprehension
- Dict comprehension
- Manipulating Strings
- Escape Characters
- Raw Strings
- Multiline Strings with Triple Quotes
- Indexing and Slicing Strings
- The in and not in Operators with Strings
- The in and not in Operators with list
- The upper(), lower(), isupper(), and islower() String Methods
- The isX String Methods
- The startswith() and endswith() String Methods
- The join() and split() String Methods
- Justifying Text with rjust(), ljust(), and center()
- Removing Whitespace with strip(), rstrip(), and lstrip()
- Copying and Pasting Strings with the pyperclip Module (need pip install)
- String Formatting
- % operator
- String Formatting (str.format)
- Lazy string formatting
- Formatted String Literals or f-strings (Python 3.6+)
- Template Strings
- Regular Expressions
- Matching Regex Objects
- Grouping with Parentheses
- Matching Multiple Groups with the Pipe
- Optional Matching with the Question Mark
- Matching Zero or More with the Star
- Matching One or More with the Plus
- Matching Specific Repetitions with Curly Brackets
- Greedy and Nongreedy Matching
- The findall() Method
- Making Your Own Character Classes
- The Caret and Dollar Sign Characters
- The Wildcard Character
- Matching Everything with Dot-Star
- Matching Newlines with the Dot Character
- Review of Regex Symbols
- Case-Insensitive Matching
- Substituting Strings with the sub() Method
- Managing Complex Regexes
- Handling File and Directory Paths
- Backslash on Windows and Forward Slash on OS X and Linux
- The Current Working Directory
- Creating New Folders
- Absolute vs. Relative Paths
- Handling Absolute and Relative Paths
- Checking Path Validity
- Finding File Sizes and Folder Contents
- Copying Files and Folders
- Moving and Renaming Files and Folders
- Permanently Deleting Files and Folders
- Safe Deletes with the send2trash Module
- Walking a Directory Tree
- Reading and Writing Files
- The File Reading/Writing Process
- Opening and reading files with the open() function
- Writing to Files
- Saving Variables with the shelve Module
- Saving Variables with the pprint.pformat() Function
- Reading ZIP Files
- Extracting from ZIP Files
- Creating and Adding to ZIP Files
- JSON, YAML and configuration files
- JSON
- YAML
- Anyconfig
- Debugging
- Raising Exceptions
- Getting the Traceback as a String
- Assertions
- Logging
- Logging Levels
- Disabling Logging
- Logging to a File
- Lambda Functions
- Ternary Conditional Operator
- args and kwargs
- Things to Remember(args)
- Things to Remember(kwargs)
- Context Manager
- with statement
- Writing your own contextmanager using generator syntax
__main__
Top-level script environment- Advantages
- setup.py
- Dataclasses
- Features
- Default values
- Type hints
- Virtual Environment
- virtualenv
- poetry
- pipenv
- anaconda
Python Basics
Math Operators
From Highest to Lowest precedence:
Operators | Operation | Example |
---|---|---|
** | Exponent | 2 ** 3 = 8 |
% | Modulus/Remainder | 22 % 8 = 6 |
// | Integer division | 22 // 8 = 2 |
/ | Division | 22 / 8 = 2.75 |
* | Multiplication | 3 * 3 = 9 |
- | Subtraction | 5 - 2 = 3 |
+ | Addition | 2 + 2 = 4 |
Examples of expressions in the interactive shell:
>>> 2 + 3 * 6
20
>>> (2 + 3) * 6
30
>>> 2 ** 8
256
>>> 23 // 7
3
>>> 23 % 7
2
>>> (5 - 1) * ((7 + 1) / (3 - 1))
16.0
Data Types
Data Type | Examples |
---|---|
Integers | -2, -1, 0, 1, 2, 3, 4, 5 |
Floating-point numbers | -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25 |
Strings | 'a', 'aa', 'aaa', 'Hello!', '11 cats' |
String Concatenation and Replication
String concatenation:
>>> 'Alice' 'Bob'
'AliceBob'
Note: Avoid +
operator for string concatenation. Prefer string formatting.
String Replication:
>>> 'Alice' * 5
'AliceAliceAliceAliceAlice'
Variables
You can name a variable anything as long as it obeys the following rules:
- It can be only one word.
- It can use only letters, numbers, and the underscore (
_
) character. - It can’t begin with a number.
- Variable name starting with an underscore (
_
) are considered as "unuseful`.
Example:
`python
spam = 'Hello'
spam
'Hello'
`
`python
_spam = 'Hello'
`
_spam
should not be used again in the code.
Comments
Inline comment:
`python
This is a comment
`
Multiline comment:
`Python
This is a
multiline comment
`
Code with a comment:
python
a = 1 # initialization
Please note the two spaces in front of the comment.
Function docstring:
python
def foo():
"""
This is a function docstring
You can also use:
''' Function Docstring '''
"""
The print() Function
`python
print('Hello world!')
Hello world!
`
`python
a = 1
print('Hello world!', a)
Hello world! 1
`
The input() Function
Example Code:
`python
print('What is your name?') # ask for their name
myName = input()
print('It is good to meet you, {}'.format(myName))
What is your name?
Al
It is good to meet you, Al
`
The len() Function
Evaluates to the integer value of the number of characters in a string:
`python
len('hello')
5
`
Note: test of emptiness of strings, lists, dictionary, etc, should not use len, but prefer direct
boolean evaluation.
`python
a = [1, 2, 3]
if a:
print("the list is not empty!")
`
The str(), int(), and float() Functions
Integer to String or Float:
`python
str(29)
'29'
`
`python
print('I am {} years old.'.format(str(29)))
I am 29 years old.
`
`python
str(-3.14)
'-3.14'
`
Float to Integer:
`python
int(7.7)
7
`
`python
int(7.7) + 1
8
`
Flow Control
Comparison Operators
Operator | Meaning |
---|---|
== |
Equal to |
!= |
Not equal to |
< |
Less than |
> |
Greater Than |
<= |
Less than or Equal to |
>= |
Greater than or Equal to |
These operators evaluate to True or False depending on the values you give them.
Examples:
`python
42 == 42
True
`
`python
40 == 42
False
`
`python
'hello' == 'hello'
True
`
`python
'hello' == 'Hello'
False
`
`python
'dog' != 'cat'
True
`
`python
42 == 42.0
True
`
`python
42 == '42'
False
`
Boolean evaluation
Never use ==
or !=
operator to evaluate boolean operation. Use the is
or is not
operators,
or use implicit boolean evaluation.
NO (even if they are valid Python):
`python
True == True
True
`
`python
True != False
True
`
YES (even if they are valid Python):
`python
True is True
True
`
`python
True is not False
True
`
These statements are equivalent:
`Python
if a is True:
pass
if a is not False:
pass
if a:
pass
`
And these as well:
`Python
if a is False:
pass
if a is not True:
pass
if not a:
pass
`
Boolean Operators
There are three Boolean operators: and, or, and not.
The and Operator’s Truth Table:
Expression | Evaluates to |
---|---|
True and True |
True |
True and False |
False |
False and True |
False |
False and False |
False |
The or Operator’s Truth Table:
Expression | Evaluates to |
---|---|
True or True |
True |
True or False |
True |
False or True |
True |
False or False |
False |
The not Operator’s Truth Table:
Expression | Evaluates to |
---|---|
not True |
False |
not False |
True |
Mixing Boolean and Comparison Operators
`python
(4 < 5) and (5 < 6)
True
`
`python
(4 < 5) and (9 < 6)
False
`
`python
(1 == 2) or (2 == 2)
True
`
You can also use multiple Boolean operators in an expression, along with the comparison operators:
`python
2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2
True
`
if Statements
python
if name == 'Alice':
print('Hi, Alice.')
else Statements
python
name = 'Bob'
if name == 'Alice':
print('Hi, Alice.')
else:
print('Hello, stranger.')
elif Statements
python
name = 'Bob'
age = 5
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')
python
name = 'Bob'
age = 30
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print('You are not Alice, kiddo.')
else:
print('You are neither Alice nor a little kid.')
while Loop Statements
python
spam = 0
while spam < 5:
print('Hello, world.')
spam = spam + 1
break Statements
If the execution reaches a break statement, it immediately exits the while loop’s clause:
python
while True:
print('Please type your name.')
name = input()
if name == 'your name':
break
print('Thank you!')
continue Statements
When the program execution reaches a continue statement, the program execution immediately jumps back to the start of the loop.
python
while True:
print('Who are you?')
name = input()
if name != 'Joe':
continue
print('Hello, Joe. What is the password? (It is a fish.)')
password = input()
if password == 'swordfish':
break
print('Access granted.')
for Loops and the range() Function
`python
print('My name is')
for i in range(5):
print('Jimmy Five Times ({})'.format(str(i)))
My name is
Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)
`
The range() function can also be called with three arguments. The first two arguments will be the start and stop values, and the third will be the step argument. The step is the amount that the variable is increased by after each iteration.
`python
for i in range(0, 10, 2):
print(i)
0
2
4
6
8
`
You can even use a negative number for the step argument to make the for loop count down instead of up.
`python
for i in range(5, -1, -1):
print(i)
5
4
3
2
1
0
`
For else statement
This allows to specify a statement to execute in case of the full loop has been executed. Only
useful when a break
condition can occur in the loop:
`python
for i in [1, 2, 3, 4, 5]:
if i == 3:
break
else:
print("only executed when no item of the list is equal to 3")
`
Importing Modules
python
import random
for i in range(5):
print(random.randint(1, 10))
python
import random, sys, os, math
python
from random import *
Ending a Program Early with sys.exit()
`python
import sys
while True:
print('Type exit to exit.')
response = input()
if response == 'exit':
sys.exit()
print('You typed {}.'.format(response))
`
Functions
`python
def hello(name):
print('Hello {}'.format(name))hello('Alice')
hello('Bob')
Hello Alice
Hello Bob
`
Return Values and return Statements
When creating a function using the def statement, you can specify what the return value should be with a return statement. A return statement consists of the following:
The return keyword.
The value or expression that the function should return.
`python
import random
def getAnswer(answerNumber):
if answerNumber == 1:
return 'It is certain'
elif answerNumber == 2:
return 'It is decidedly so'
elif answerNumber == 3:
return 'Yes'
elif answerNumber == 4:
return 'Reply hazy try again'
elif answerNumber == 5:
return 'Ask again later'
elif answerNumber == 6:
return 'Concentrate and ask again'
elif answerNumber == 7:
return 'My reply is no'
elif answerNumber == 8:
return 'Outlook not so good'
elif answerNumber == 9:
return 'Very doubtful'
r = random.randint(1, 9)
fortune = getAnswer(r)
print(fortune)
`
The None Value
`python
spam = print('Hello!')
Hello!
`
`python
spam is None
True
`
Note: never compare to None
with the ==
operator. Always use is
.
Keyword Arguments and print()
`python
print('Hello', end='')
print('World')
HelloWorld
`
`python
print('cats', 'dogs', 'mice')
cats dogs mice
`
`python
print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice
`
Local and Global Scope
Code in the global scope cannot use any local variables.
However, a local scope can access global variables.
Code in a function’s local scope cannot use variables in any other local scope.
You can use the same name for different variables if they are in different scopes. That is, there can be a local variable named spam and a global variable also named spam.
The global Statement
If you need to modify a global variable from within a function, use the global statement:
`python
def spam():
global eggs
eggs = 'spam'eggs = 'global'
spam()
print(eggs)
spam
`
There are four rules to tell whether a variable is in a local scope or global scope:
If a variable is being used in the global scope (that is, outside of all functions), then it is always a global variable.
If there is a global statement for that variable in a function, it is a global variable.
Otherwise, if the variable is used in an assignment statement in the function, it is a local variable.
But if the variable is not used in an assignment statement, it is a global variable.
Exception Handling
Basic exception handling
`python
def spam(divideBy):
try:
return 42 / divideBy
except ZeroDivisionError as e:
print('Error: Invalid argument: {}'.format(e))print(spam(2))
print(spam(12))
print(spam(0))
print(spam(1))
21.0
3.5
Error: Invalid argument: division by zero
None
42.0
`
Final code in exception handling
Code inside the finally
section is always executed, no matter if an exception has been raised or
not, and even if an exception is not caught.
`python
def spam(divideBy):
try:
return 42 / divideBy
except ZeroDivisionError as e:
print('Error: Invalid argument: {}'.format(e))
finally:
print("-- division finished --")
print(spam(2))
-- division finished --
21.0
print(spam(12))
-- division finished --
3.5
print(spam(0))
Error: Invalid Argument division by zero
-- division finished --
None
print(spam(1))
-- division finished --
42.0
`
Lists
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam
['cat', 'bat', 'rat', 'elephant']
`
Getting Individual Values in a List with Indexes
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam[0]
'cat'
`
`python
spam[1]
'bat'
`
`python
spam[2]
'rat'
`
`python
spam[3]
'elephant'
`
Negative Indexes
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam[-1]
'elephant'
`
`python
spam[-3]
'bat'
`
`python
'The {} is afraid of the {}.'.format(spam[-1], spam[-3])
'The elephant is afraid of the bat.'
`
Getting Sublists with Slices
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam[0:4]
['cat', 'bat', 'rat', 'elephant']
`
`python
spam[1:3]
['bat', 'rat']
`
`python
spam[0:-1]
['cat', 'bat', 'rat']
`
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam[:2]
['cat', 'bat']
`
`python
spam[1:]
['bat', 'rat', 'elephant']
`
Slicing the complete list will perform a copy:
`python
spam2 = spam[:]
['cat', 'bat', 'rat', 'elephant']
spam.append('dog')
spam
['cat', 'bat', 'rat', 'elephant', 'dog']
spam2
['cat', 'bat', 'rat', 'elephant']
`
Getting a List’s Length with len()
`python
spam = ['cat', 'dog', 'moose']
len(spam)
3
`
Changing Values in a List with Indexes
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam[1] = 'aardvark'spam
['cat', 'aardvark', 'rat', 'elephant']spam[2] = spam[1]
spam
['cat', 'aardvark', 'aardvark', 'elephant']spam[-1] = 12345
spam
['cat', 'aardvark', 'aardvark', 12345]
`
List Concatenation and List Replication
`python
[1, 2, 3] + ['A', 'B', 'C']
[1, 2, 3, 'A', 'B', 'C']['X', 'Y', 'Z'] * 3
['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']spam = [1, 2, 3]
spam = spam + ['A', 'B', 'C']
spam
[1, 2, 3, 'A', 'B', 'C']
`
Removing Values from Lists with del Statements
`python
spam = ['cat', 'bat', 'rat', 'elephant']
del spam[2]
spam
['cat', 'bat', 'elephant']
`
`python
del spam[2]
spam
['cat', 'bat']
`
Using for Loops with Lists
`python
supplies = ['pens', 'staplers', 'flame-throwers', 'binders']
for i, supply in enumerate(supplies):
print('Index {} in supplies is: {}'.format(str(i), supply))
Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flame-throwers
Index 3 in supplies is: binders
`
Looping Through Multiple Lists with zip()
`python
name = ['Pete', 'John', 'Elizabeth']
age = [6, 23, 44]
for n, a in zip(name, age):
print('{} is {} years old'.format(n, a))
Pete is 6 years old
John is 23 years old
Elizabeth is 44 years old
`
The in and not in Operators
`python
'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True
`
`python
spam = ['hello', 'hi', 'howdy', 'heyas']
'cat' in spam
False
`
`python
'howdy' not in spam
False
`
`python
'cat' not in spam
True
`
The Multiple Assignment Trick
The multiple assignment trick is a shortcut that lets you assign multiple variables with the values in a list in one line of code. So instead of doing this:
`python
cat = ['fat', 'orange', 'loud']
size = cat[0]
color = cat[1]
disposition = cat[2]
`
You could type this line of code:
`python
cat = ['fat', 'orange', 'loud']
size, color, disposition = cat
`
The multiple assignment trick can also be used to swap the values in two variables:
`python
a, b = 'Alice', 'Bob'
a, b = b, a
print(a)
'Bob'
`
`python
print(b)
'Alice'
`
Augmented Assignment Operators
Operator | Equivalent |
---|---|
spam += 1 |
spam = spam + 1 |
spam -= 1 |
spam = spam - 1 |
spam *= 1 |
spam = spam * 1 |
spam /= 1 |
spam = spam / 1 |
spam %= 1 |
spam = spam % 1 |
Examples:
`python
spam = 'Hello'
spam += ' world!'
spam
'Hello world!'bacon = ['Zophie']
bacon *= 3
bacon
['Zophie', 'Zophie', 'Zophie']
`
Finding a Value in a List with the index() Method
`python
spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']
spam.index('Pooka')
1
`
Adding Values to Lists with the append() and insert() Methods
append():
`python
spam = ['cat', 'dog', 'bat']
spam.append('moose')
spam
['cat', 'dog', 'bat', 'moose']
`
insert():
`python
spam = ['cat', 'dog', 'bat']
spam.insert(1, 'chicken')
spam
['cat', 'chicken', 'dog', 'bat']
`
Removing Values from Lists with remove()
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam.remove('bat')
spam
['cat', 'rat', 'elephant']
`
If the value appears multiple times in the list, only the first instance of the value will be removed.
Removing Values from Lists with pop()
`python
spam = ['cat', 'bat', 'rat', 'elephant']
spam.pop()
'elephant'spam
['cat', 'bat', 'rat']spam.pop(0)
'cat'spam
['bat', 'rat']
`
Sorting the Values in a List with the sort() Method
`python
spam = [2, 5, 3.14, 1, -7]
spam.sort()
spam
[-7, 1, 2, 3.14, 5]
`
`python
spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
spam.sort()
spam
['ants', 'badgers', 'cats', 'dogs', 'elephants']
`
You can also pass True for the reverse keyword argument to have sort() sort the values in reverse order:
`python
spam.sort(reverse=True)
spam
['elephants', 'dogs', 'cats', 'badgers', 'ants']
`
If you need to sort the values in regular alphabetical order, pass str. lower for the key keyword argument in the sort() method call:
`python
spam = ['a', 'z', 'A', 'Z']
spam.sort(key=str.lower)
spam
['a', 'A', 'z', 'Z']
`
You can use the built-in function sorted
to return a new list:
`python
spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
sorted(spam)
['ants', 'badgers', 'cats', 'dogs', 'elephants']
`
Tuple Data Type
`python
eggs = ('hello', 42, 0.5)
eggs[0]
'hello'
`
`python
eggs1:3
`
`python
len(eggs)
3
`
The main way that tuples are different from lists is that tuples, like strings, are immutable.
Converting Types with the list() and tuple() Functions
`python
tuple(['cat', 'dog', 5])
('cat', 'dog', 5)
`
`python
list(('cat', 'dog', 5))
['cat', 'dog', 5]
`
`python
list('hello')
['h', 'e', 'l', 'l', 'o']
`
Dictionaries and Structuring Data
Example Dictionary:
python
myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}
The keys(), values(), and items() Methods
values():
`python
spam = {'color': 'red', 'age': 42}
for v in spam.values():
print(v)
red
42
`
keys():
`python
for k in spam.keys():
print(k)
color
age
`
items():
`python
for i in spam.items():
print(i)
('color', 'red')
('age', 42)
`
Using the keys(), values(), and items() methods, a for loop can iterate over the keys, values, or key-value pairs in a dictionary, respectively.
`python
spam = {'color': 'red', 'age': 42}
for k, v in spam.items():
print('Key: {} Value: {}'.format(k, str(v)))
Key: age Value: 42
Key: color Value: red
`
Checking Whether a Key or Value Exists in a Dictionary
`python
spam = {'name': 'Zophie', 'age': 7}
`
`python
'name' in spam.keys()
True
`
`python
'Zophie' in spam.values()
True
`
`python
You can omit the call to keys() when checking for a key
'color' in spam
False
`
`python
'color' not in spam
True
`
The get() Method
Get has two parameters: key and default value if the key did not exist
`python
picnic_items = {'apples': 5, 'cups': 2}
'I am bringing {} cups.'.format(str(picnic_items.get('cups', 0)))
'I am bringing 2 cups.'
`
`python
'I am bringing {} eggs.'.format(str(picnic_items.get('eggs', 0)))
'I am bringing 0 eggs.'
`
The setdefault() Method
Let's consider this code:
`python
spam = {'name': 'Pooka', 'age': 5}
if 'color' not in spam:
spam['color'] = 'black'
`
Using setdefault
we could write the same code more succinctly:
`python
spam = {'name': 'Pooka', 'age': 5}
spam.setdefault('color', 'black')
'black'
`
`python
spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}
`
`python
spam.setdefault('color', 'white')
'black'
`
`python
spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}
`
Pretty Printing
`python
import pprint
message = 'It was a bright cold day in April, and the clocks were striking
thirteen.'
count = {}for character in message:
count.setdefault(character, 0)
count[character] = count[character] + 1pprint.pprint(count)
{' ': 13,
',': 1,
'.': 1,
'A': 1,
'I': 1,
'a': 4,
'b': 1,
'c': 3,
'd': 3,
'e': 5,
'g': 2,
'h': 3,
'i': 6,
'k': 2,
'l': 3,
'n': 4,
'o': 2,
'p': 1,
'r': 5,
's': 3,
't': 6,
'w': 2,
'y': 1}
`
Merge two dictionaries
`python
in Python 3.5+:
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = {**x, **y}
z
{'c': 4, 'a': 1, 'b': 3}
in Python 2.7
z = dict(x, **y)
z
{'c': 4, 'a': 1, 'b': 3}
`
sets
From the Python 3 documentation
A set is an unordered collection with no duplicate elements. Basic uses include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like union, intersection, difference, and symmetric difference.
Initializing a set
There are two ways to create sets: using curly braces {}
and the built-in function set()
`python
s = {1, 2, 3}
s = set([1, 2, 3])
`
When creating an empty set, be sure to not use the curly braces {}
or you will get an empty dictionary instead.
`python
s = {}
type(s)
`
sets: unordered collections of unique elements
A set automatically remove all the duplicate values.
`python
s = {1, 2, 3, 2, 3, 4}
s
{1, 2, 3, 4}
`
And as an unordered data type, they can't be indexed.
`python
s = {1, 2, 3}
s[0]
Traceback (most recent call last):
File "", line 1, in
TypeError: 'set' object does not support indexing`
set add() and update()
Using the add()
method we can add a single element to the set.
`python
s = {1, 2, 3}
s.add(4)
s
{1, 2, 3, 4}
`
And with update()
, multiple ones .
`python
s = {1, 2, 3}
s.update([2, 3, 4, 5, 6])
s
{1, 2, 3, 4, 5, 6} # remember, sets automatically remove duplicates
`
set remove() and discard()
Both methods will remove an element from the set, but remove()
will raise a key error
if the value doesn't exist.
`python
s = {1, 2, 3}
s.remove(3)
s
{1, 2}
s.remove(3)
Traceback (most recent call last):
File "", line 1, in
KeyError: 3
`
discard()
won't raise any errors.
`python
s = {1, 2, 3}
s.discard(3)
s
{1, 2}
s.discard(3)`
set union()
union()
or |
will create a new set that contains all the elements from the sets provided.
`python
s1 = {1, 2, 3}
s2 = {3, 4, 5}
s1.union(s2) # or 's1 | s2'
{1, 2, 3, 4, 5}
`
set intersection
intersection
or &
will return a set containing only the elements that are common to all of them.
`python
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s3 = {3, 4, 5}
s1.intersection(s2, s3) # or 's1 & s2 & s3'
{3}
`
set difference
difference
or -
will return only the elements that are unique to the first set (invoked set).
`python
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s1.difference(s2) # or 's1 - s2'
{1}
s2.difference(s1) # or 's2 - s1'
{4}
`
set symetric_difference
symetric_difference
or ^
will return all the elements that are not common between them.
`python
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s1.symmetric_difference(s2) # or 's1 ^ s2'
{1, 4}
`
itertools Module
The itertools module is a collection of tools intended to be fast and use memory efficiently when handling iterators (like lists or dictionaries).
From the official Python 3.x documentation:
The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination. Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in pure Python.
The itertools module comes in the standard library and must be imported.
The operator module will also be used. This module is not necessary when using itertools, but needed for some of the examples below.
accumulate()
Makes an iterator that returns the results of a function.
python
itertools.accumulate(iterable[, func])
Example:
`python
data = [1, 2, 3, 4, 5]
result = itertools.accumulate(data, operator.mul)
for each in result:
print(each)
1
2
6
24
120
`
The operator.mul takes two numbers and multiplies them:
python
operator.mul(1, 2)
2
operator.mul(2, 3)
6
operator.mul(6, 4)
24
operator.mul(24, 5)
120
Passing a function is optional:
`python
data = [5, 2, 6, 4, 5, 9, 1]
result = itertools.accumulate(data)
for each in result:
print(each)
5
7
13
17
22
31
32
`
If no function is designated the items will be summed:
python
5
5 + 2 = 7
7 + 6 = 13
13 + 4 = 17
17 + 5 = 22
22 + 9 = 31
31 + 1 = 32
combinations()
Takes an iterable and a integer. This will create all the unique combination that have r members.
python
itertools.combinations(iterable, r)
Example:
`python
shapes = ['circle', 'triangle', 'square',]
result = itertools.combinations(shapes, 2)
for each in result:
print(each)
('circle', 'triangle')
('circle', 'square')
('triangle', 'square')
`
combinations_with_replacement()
Just like combinations(), but allows individual elements to be repeated more than once.
python
itertools.combinations_with_replacement(iterable, r)
Example:
`python
shapes = ['circle', 'triangle', 'square']
result = itertools.combinations_with_replacement(shapes, 2)
for each in result:
print(each)
('circle', 'circle')
('circle', 'triangle')
('circle', 'square')
('triangle', 'triangle')
('triangle', 'square')
('square', 'square')
`
count()
Makes an iterator that returns evenly spaced values starting with number start.
python
itertools.count(start=0, step=1)
Example:
`python
for i in itertools.count(10,3):
print(i)
if i > 20:
break
10
13
16
19
22
`
cycle()
This function cycles through an iterator endlessly.
python
itertools.cycle(iterable)
Example:
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue', 'violet']
for color in itertools.cycle(colors):
print(color)
red
orange
yellow
green
blue
violet
red
orange
`
When reached the end of the iterable it start over again from the beginning.
chain()
Take a series of iterables and return them as one long iterable.
python
itertools.chain(*iterables)
Example:
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue']
shapes = ['circle', 'triangle', 'square', 'pentagon']
result = itertools.chain(colors, shapes)
for each in result:
print(each)
red
orange
yellow
green
blue
circle
triangle
square
pentagon
`
compress()
Filters one iterable with another.
python
itertools.compress(data, selectors)
Example:
`python
shapes = ['circle', 'triangle', 'square', 'pentagon']
selections = [True, False, True, False]
result = itertools.compress(shapes, selections)
for each in result:
print(each)
circle
square
`
dropwhile()
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every element.
python
itertools.dropwhile(predicate, iterable)
Example:
`python
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
result = itertools.dropwhile(lambda x: x<5, data)
for each in result:
print(each)
5
6
7
8
9
10
1
`
filterfalse()
Makes an iterator that filters elements from iterable returning only those for which the predicate is False.
python
itertools.filterfalse(predicate, iterable)
Example:
`python
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
result = itertools.filterfalse(lambda x: x<5, data)
for each in result:
print(each)
5
6
7
8
9
10
`
groupby()
Simply put, this function groups things together.
python
itertools.groupby(iterable, key=None)
Example:
`python
robots = [{
'name': 'blaster',
'faction': 'autobot'
}, {
'name': 'galvatron',
'faction': 'decepticon'
}, {
'name': 'jazz',
'faction': 'autobot'
}, {
'name': 'metroplex',
'faction': 'autobot'
}, {
'name': 'megatron',
'faction': 'decepticon'
}, {
'name': 'starcream',
'faction': 'decepticon'
}]
for key, group in itertools.groupby(robots, key=lambda x: x['faction']):
print(key)
print(list(group))
autobot
[{'name': 'blaster', 'faction': 'autobot'}]
decepticon
[{'name': 'galvatron', 'faction': 'decepticon'}]
autobot
[{'name': 'jazz', 'faction': 'autobot'}, {'name': 'metroplex', 'faction': 'autobot'}]
decepticon
[{'name': 'megatron', 'faction': 'decepticon'}, {'name': 'starcream', 'faction': 'decepticon'}]
`
islice()
This function is very much like slices. This allows you to cut out a piece of an iterable.
python
itertools.islice(iterable, start, stop[, step])
Example:
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue',]
few_colors = itertools.islice(colors, 2)
for each in few_colors:
print(each)
red
orange
`
permutations()
python
itertools.permutations(iterable, r=None)
Example:
`python
alpha_data = ['a', 'b', 'c']
result = itertools.permutations(alpha_data)
for each in result:
print(each)
('a', 'b', 'c')
('a', 'c', 'b')
('b', 'a', 'c')
('b', 'c', 'a')
('c', 'a', 'b')
('c', 'b', 'a')
`
product()
Creates the cartesian products from a series of iterables.
`python
num_data = [1, 2, 3]
alpha_data = ['a', 'b', 'c']
result = itertools.product(num_data, alpha_data)
for each in result:
print(each)
(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')
`
repeat()
This function will repeat an object over and over again. Unless, there is a times argument.
python
itertools.repeat(object[, times])
Example:
`python
for i in itertools.repeat("spam", 3):
print(i)
spam
spam
spam
`
starmap()
Makes an iterator that computes the function using arguments obtained from the iterable.
python
itertools.starmap(function, iterable)
Example:
`python
data = [(2, 6), (8, 4), (7, 3)]
result = itertools.starmap(operator.mul, data)
for each in result:
print(each)
12
32
21
`
takewhile()
The opposite of dropwhile(). Makes an iterator and returns elements from the iterable as long as the predicate is true.
python
itertools.takewhile(predicate, iterable)
Example:
`python
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
result = itertools.takewhile(lambda x: x<5, data)
for each in result:
print(each)
1
2
3
4
`
tee()
Return n independent iterators from a single iterable.
python
itertools.tee(iterable, n=2)
Example:
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue']
alpha_colors, beta_colors = itertools.tee(colors)
for each in alpha_colors:
print(each)
red
orange
yellow
green
blue
`
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue']
alpha_colors, beta_colors = itertools.tee(colors)
for each in beta_colors:
print(each)
red
orange
yellow
green
blue
`
zip_longest()
Makes an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length, missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted.
python
itertools.zip_longest(*iterables, fillvalue=None)
Example:
`python
colors = ['red', 'orange', 'yellow', 'green', 'blue',]
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]
for each in itertools.zip_longest(colors, data, fillvalue=None):
print(each)
('red', 1)
('orange', 2)
('yellow', 3)
('green', 4)
('blue', 5)
(None, 6)
(None, 7)
(None, 8)
(None, 9)
(None, 10)
`
Comprehensions
List comprehension
`python
a = [1, 3, 5, 7, 9, 11]
[i - 1 for i in a]
[0, 2, 4, 6, 8, 10]
`
Set comprehension
`python
b = {"abc", "def"}
{s.upper() for s in b}
{"ABC", "DEF"}
`
Dict comprehension
`python
c = {'name': 'Pooka', 'age': 5}
{v: k for k, v in c.items()}
{'Pooka': 'name', 5: 'age'}
`
A List comprehension can be generated from a dictionary:
`python
c = {'name': 'Pooka', 'first_name': 'Oooka'}
["{}:{}".format(k.upper(), v.upper()) for k, v in c.items()]
['NAME:POOKA', 'FIRST_NAME:OOOKA']
`
Manipulating Strings
Escape Characters
Escape character | Prints as |
---|---|
\' |
Single quote |
\" |
Double quote |
\t |
Tab |
\n |
Newline (line break) |
\\ |
Backslash |
Example:
`python
print("Hello there!\nHow are you?\nI\'m doing fine.")
Hello there!
How are you?
I'm doing fine.
`
Raw Strings
A raw string completely ignores all escape characters and prints any backslash that appears in the string.
`python
print(r'That is Carol\'s cat.')
That is Carol\'s cat.
`
Note: mostly used for regular expression definition (see re
package)
Multiline Strings with Triple Quotes
`python
print('''Dear Alice,
Eve's cat has been arrested for catnapping, cat burglary, and extortion.
Sincerely,
Bob''')
Dear Alice,
Eve's cat has been arrested for catnapping, cat burglary, and extortion.
Sincerely,
Bob
`
To keep a nicer flow in your code, you can use the dedent
function from the textwrap
standard package.
`python
from textwrap import dedent
def my_function():
print('''
Dear Alice,Eve's cat has been arrested for catnapping, cat burglary, and extortion. Sincerely, Bob ''').strip()
`
This generates the same string than before.
Indexing and Slicing Strings
H e l l o w o r l d !
0 1 2 3 4 5 6 7 8 9 10 11
`python
spam = 'Hello world!'
spam[0]
'H'
`
`python
spam[4]
'o'
`
`python
spam[-1]
'!'
`
Slicing:
`python
spam[0:5]
'Hello'
`
`python
spam[:5]
'Hello'
`
`python
spam[6:]
'world!'
`
`python
spam[6:-1]
'world'
`
`python
spam[:-1]
'Hello world'
`
`python
spam[::-1]
'!dlrow olleH'
`
`python
spam = 'Hello world!'
fizz = spam[0:5]
fizz
'Hello'
`
The in and not in Operators with Strings
`python
'Hello' in 'Hello World'
True
`
`python
'Hello' in 'Hello'
True
`
`python
'HELLO' in 'Hello World'
False
`
`python
'' in 'spam'
True
`
`python
'cats' not in 'cats and dogs'
False
`
The in and not in Operators with list
`python
a = [1, 2, 3, 4]
5 in a
False
`
`python
2 in a
True
`
The upper(), lower(), isupper(), and islower() String Methods
upper()
and lower()
:
`python
spam = 'Hello world!'
spam = spam.upper()
spam
'HELLO WORLD!'
`
`python
spam = spam.lower()
spam
'hello world!'
`
isupper() and islower():
`python
spam = 'Hello world!'
spam.islower()
False
`
`python
spam.isupper()
False
`
`python
'HELLO'.isupper()
True
`
`python
'abc12345'.islower()
True
`
`python
'12345'.islower()
False
`
`python
'12345'.isupper()
False
`
The isX String Methods
- isalpha() returns True if the string consists only of letters and is not blank.
- isalnum() returns True if the string consists only of letters and numbers and is not blank.
- isdecimal() returns True if the string consists only of numeric characters and is not blank.
- isspace() returns True if the string consists only of spaces,tabs, and new-lines and is not blank.
- istitle() returns True if the string consists only of words that begin with an uppercase letter followed by only lowercase letters.
The startswith() and endswith() String Methods
`python
'Hello world!'.startswith('Hello')
True
`
`python
'Hello world!'.endswith('world!')
True
`
`python
'abc123'.startswith('abcdef')
False
`
`python
'abc123'.endswith('12')
False
`
`python
'Hello world!'.startswith('Hello world!')
True
`
`python
'Hello world!'.endswith('Hello world!')
True
`
The join() and split() String Methods
join():
`python
', '.join(['cats', 'rats', 'bats'])
'cats, rats, bats'
`
`python
' '.join(['My', 'name', 'is', 'Simon'])
'My name is Simon'
`
`python
'ABC'.join(['My', 'name', 'is', 'Simon'])
'MyABCnameABCisABCSimon'
`
split():
`python
'My name is Simon'.split()
['My', 'name', 'is', 'Simon']
`
`python
'MyABCnameABCisABCSimon'.split('ABC')
['My', 'name', 'is', 'Simon']
`
`python
'My name is Simon'.split('m')
['My na', 'e is Si', 'on']
`
Justifying Text with rjust(), ljust(), and center()
rjust() and ljust():
`python
'Hello'.rjust(10)
' Hello'
`
`python
'Hello'.rjust(20)
' Hello'
`
`python
'Hello World'.rjust(20)
' Hello World'
`
`python
'Hello'.ljust(10)
'Hello '
`
An optional second argument to rjust() and ljust() will specify a fill character other than a space character. Enter the following into the interactive shell:
`python
'Hello'.rjust(20, '')
'**************Hello'
`
`python
'Hello'.ljust(20, '-')
'Hello---------------'
`
center():
`python
'Hello'.center(20)
' Hello '
`
`python
'Hello'.center(20, '=')
'=======Hello========'
`
Removing Whitespace with strip(), rstrip(), and lstrip()
`python
spam = ' Hello World '
spam.strip()
'Hello World'
`
`python
spam.lstrip()
'Hello World '
`
`python
spam.rstrip()
' Hello World'
`
`python
spam = 'SpamSpamBaconSpamEggsSpamSpam'
spam.strip('ampS')
'BaconSpamEggs'
`
Copying and Pasting Strings with the pyperclip Module (need pip install)
`python
import pyperclip
pyperclip.copy('Hello world!')
pyperclip.paste()
'Hello world!'
`
String Formatting
% operator
`python
name = 'Pete'
'Hello %s' % name
"Hello Pete"
`
We can use the %x
format specifier to convert an int value to a string:
`python
num = 5
'I have %x apples' % num
"I have 5 apples"
`
Note: For new code, using str.format or f-strings (Python 3.6+) is strongly recommended over the %
operator.
String Formatting (str.format)
Python 3 introduced a new way to do string formatting that was later back-ported to Python 2.7. This makes the syntax for string formatting more regular.
`python
name = 'John'
age = 20'"Hello I'm {}, my age is {}".format(name, age)
"Hello I'm John, my age is 20"
`
`python
"Hello I'm {0}, my age is {1}".format(name, age)
"Hello I'm John, my age is 20"
`
The official Python 3.x documentation recommend str.format
over the %
operator:
The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals or the str.format() interface helps avoid these errors. These alternatives also provide more powerful, flexible and extensible approaches to formatting text.
Lazy string formatting
You would only use %s
string formatting on functions that can do lazy parameters evaluation,
the most common being logging:
Prefer:
`python
name = "alice"
logging.debug("User name: %s", name)
`
Over:
`python
logging.debug("User name: {}".format(name))
`
Or:
`python
logging.debug("User name: " + name)
`
Formatted String Literals or f-strings (Python 3.6+)
`python
name = 'Elizabeth'
f'Hello {name}!'
'Hello Elizabeth!
`
It is even possible to do inline arithmetic with it:
`python
a = 5
b = 10
f'Five plus ten is {a + b} and not {2 * (a + b)}.'
'Five plus ten is 15 and not 30.'
`
Template Strings
A simpler and less powerful mechanism, but it is recommended when handling format strings generated by users. Due to their reduced complexity template strings are a safer choice.
`python
from string import Template
name = 'Elizabeth'
t = Template('Hey $name!')
t.substitute(name=name)
'Hey Elizabeth!'
`
Regular Expressions
- Import the regex module with
import re
. - Create a Regex object with the
re.compile()
function. (Remember to use a raw string.) - Pass the string you want to search into the Regex object’s
search()
method. This returns aMatch
object. - Call the Match object’s
group()
method to return a string of the actual matched text.
All the regex functions in Python are in the re module:
`python
import re
`
Matching Regex Objects
`python
phone_num_regex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
mo = phone_num_regex.search('My number is 415-555-4242.')
print('Phone number found: {}'.format(mo.group()))
Phone number found: 415-555-4242
`
Grouping with Parentheses
`python
phone_num_regex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')
mo = phone_num_regex.search('My number is 415-555-4242.')
mo.group(1)
'415'mo.group(2)
'555-4242'mo.group(0)
'415-555-4242'mo.group()
'415-555-4242'
`
To retrieve all the groups at once: use the groups() method—note the plural form for the name.
`python
mo.groups()
('415', '555-4242')area_code, main_number = mo.groups()
print(area_code)
415print(main_number)
555-4242
`
Matching Multiple Groups with the Pipe
The | character is called a pipe. You can use it anywhere you want to match one of many expressions. For example, the regular expression r'Batman|Tina Fey' will match either 'Batman' or 'Tina Fey'.
`python
hero_regex = re.compile (r'Batman|Tina Fey')
mo1 = hero_regex.search('Batman and Tina Fey.')
mo1.group()
'Batman'mo2 = hero_regex.search('Tina Fey and Batman.')
mo2.group()
'Tina Fey'
`
You can also use the pipe to match one of several patterns as part of your regex:
`python
bat_regex = re.compile(r'Bat(man|mobile|copter|bat)')
mo = bat_regex.search('Batmobile lost a wheel')
mo.group()
'Batmobile'mo.group(1)
'mobile'
`
Optional Matching with the Question Mark
The ? character flags the group that precedes it as an optional part of the pattern.
`python
bat_regex = re.compile(r'Bat(wo)?man')
mo1 = bat_regex.search('The Adventures of Batman')
mo1.group()
'Batman'mo2 = bat_regex.search('The Adventures of Batwoman')
mo2.group()
'Batwoman'
`
Matching Zero or More with the Star
The * (called the star or asterisk) means “match zero or more”—the group that precedes the star can occur any number of times in the text.
`python
bat_regex = re.compile(r'Bat(wo)*man')
mo1 = bat_regex.search('The Adventures of Batman')
mo1.group()
'Batman'mo2 = bat_regex.search('The Adventures of Batwoman')
mo2.group()
'Batwoman'mo3 = bat_regex.search('The Adventures of Batwowowowoman')
mo3.group()
'Batwowowowoman'
`
Matching One or More with the Plus
While * means “match zero or more,” the + (or plus) means “match one or more”. The group preceding a plus must appear at least once. It is not optional:
`python
bat_regex = re.compile(r'Bat(wo)+man')
mo1 = bat_regex.search('The Adventures of Batwoman')
mo1.group()
'Batwoman'
`
`python
mo2 = bat_regex.search('The Adventures of Batwowowowoman')
mo2.group()
'Batwowowowoman'
`
`python
mo3 = bat_regex.search('The Adventures of Batman')
mo3 is None
True
`
Matching Specific Repetitions with Curly Brackets
If you have a group that you want to repeat a specific number of times, follow the group in your regex with a number in curly brackets. For example, the regex (Ha){3} will match the string 'HaHaHa', but it will not match 'HaHa', since the latter has only two repeats of the (Ha) group.
Instead of one number, you can specify a range by writing a minimum, a comma, and a maximum in between the curly brackets. For example, the regex (Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.
`python
ha_regex = re.compile(r'(Ha){3}')
mo1 = ha_regex.search('HaHaHa')
mo1.group()
'HaHaHa'
`
`python
mo2 = ha_regex.search('Ha')
mo2 is None
True
`
Greedy and Nongreedy Matching
Python’s regular expressions are greedy by default, which means that in ambiguous situations they will match the longest string possible. The non-greedy version of the curly brackets, which matches the shortest string possible, has the closing curly bracket followed by a question mark.
`python
greedy_ha_regex = re.compile(r'(Ha){3,5}')
mo1 = greedy_ha_regex.search('HaHaHaHaHa')
mo1.group()
'HaHaHaHaHa'
`
`python
nongreedy_ha_regex = re.compile(r'(Ha){3,5}?')
mo2 = nongreedy_ha_regex.search('HaHaHaHaHa')
mo2.group()
'HaHaHa'
`
The findall() Method
In addition to the search() method, Regex objects also have a findall() method. While search() will return a Match object of the first matched text in the searched string, the findall() method will return the strings of every match in the searched string.
`python
phone_num_regex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups
phone_num_regex.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']
`
To summarize what the findall() method returns, remember the following:
When called on a regex with no groups, such as \d-\d\d\d-\d\d\d\d, the method findall() returns a list of ng matches, such as ['415-555-9999', '212-555-0000'].
When called on a regex that has groups, such as (\d\d\d)-(d\d)-(\d\d\d\d), the method findall() returns a list of es of strings (one string for each group), such as [('415', '555', '9999'), ('212', '555', '0000')].
Making Your Own Character Classes
There are times when you want to match a set of characters but the shorthand character classes (\d, \w, \s, and so on) are too broad. You can define your own character class using square brackets. For example, the character class [aeiouAEIOU] will match any vowel, both lowercase and uppercase.
`python
vowel_regex = re.compile(r'[aeiouAEIOU]')
vowel_regex.findall('Robocop eats baby food. BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']
`
You can also include ranges of letters or numbers by using a hyphen. For example, the character class [a-zA-Z0-9] will match all lowercase letters, uppercase letters, and numbers.
By placing a caret character (^) just after the character class’s opening bracket, you can make a negative character class. A negative character class will match all the characters that are not in the character class. For example, enter the following into the interactive shell:
`python
consonant_regex = re.compile(r'[^aeiouAEIOU]')
consonant_regex.findall('Robocop eats baby food. BABY FOOD.')
['R', 'b', 'c', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '
', 'B', 'B', 'Y', ' ', 'F', 'D', '.']
`
The Caret and Dollar Sign Characters
You can also use the caret symbol (^) at the start of a regex to indicate that a match must occur at the beginning of the searched text.
Likewise, you can put a dollar sign (\$) at the end of the regex to indicate the string must end with this regex pattern.
And you can use the ^ and \$ together to indicate that the entire string must match the regex—that is, it’s not enough for a match to be made on some subset of the string.
The r'^Hello' regular expression string matches strings that begin with 'Hello':
`python
begins_with_hello = re.compile(r'^Hello')
begins_with_hello.search('Hello world!')
<_sre.SRE_Match object; span=(0, 5), match='Hello'>begins_with_hello.search('He said hello.') is None
True
`
The r'\d\$' regular expression string matches strings that end with a numeric character from 0 to 9:
`python
whole_string_is_num = re.compile(r'^\d+$')
whole_string_is_num.search('1234567890')
<_sre.SRE_Match object; span=(0, 10), match='1234567890'>whole_string_is_num.search('12345xyz67890') is None
Truewhole_string_is_num.search('12 34567890') is None
True
`
The Wildcard Character
The . (or dot) character in a regular expression is called a wildcard and will match any character except for a newline:
`python
at_regex = re.compile(r'.at')
at_regex.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']
`
Matching Everything with Dot-Star
`python
name_regex = re.compile(r'First Name: (.) Last Name: (.)')
mo = name_regex.search('First Name: Al Last Name: Sweigart')
mo.group(1)
'Al'
`
`python
mo.group(2)
'Sweigart'
`
The dot-star uses greedy mode: It will always try to match as much text as possible. To match any and all text in a nongreedy fashion, use the dot, star, and question mark (.*?). The question mark tells Python to match in a nongreedy way:
`python
nongreedy_regex = re.compile(r'<.*?>')
mo = nongreedy_regex.search(' for dinner.>')
mo.group()
''
`
`python
greedy_regex = re.compile(r'<.*>')
mo = greedy_regex.search(' for dinner.>')
mo.group()
' for dinner.>'
`
Matching Newlines with the Dot Character
The dot-star will match everything except a newline. By passing re.DOTALL as the second argument to re.compile(), you can make the dot character match all characters, including the newline character:
`python
no_newline_regex = re.compile('.*')
no_newline_regex.search('Serve the public trust.\nProtect the innocent.\nUphold the law.').group()
'Serve the public trust.'
`
`python
newline_regex = re.compile('.*', re.DOTALL)
newline_regex.search('Serve the public trust.\nProtect the innocent.\nUphold the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'
`
Review of Regex Symbols
Symbol | Matches |
---|---|
? |
zero or one of the preceding group. |
* |
zero or more of the preceding group. |
+ |
one or more of the preceding group. |
{n} |
exactly n of the preceding group. |
{n,} |
n or more of the preceding group. |
{,m} |
0 to m of the preceding group. |
{n,m} |
at least n and at most m of the preceding p. |
{n,m}? or *? or +?
|
performs a nongreedy match of the preceding p. |
^spam |
means the string must begin with spam. |
spam$ |
means the string must end with spam. |
. |
any character, except newline characters. |
\d , \w , and \s
|
a digit, word, or space character, respectively. |
\D , \W , and \S
|
anything except a digit, word, or space, respectively. |
[abc] |
any character between the brackets (such as a, b, ). |
[^abc] |
any character that isn’t between the brackets. |
Case-Insensitive Matching
To make your regex case-insensitive, you can pass re.IGNORECASE or re.I as a second argument to re.compile():
`python
robocop = re.compile(r'robocop', re.I)
robocop.search('Robocop is part man, part machine, all cop.').group()
'Robocop'
`
`python
robocop.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'
`
`python
robocop.search('Al, why does your programming book talk about robocop so much?').group()
'robocop'
`
Substituting Strings with the sub() Method
The sub() method for Regex objects is passed two arguments:
- The first argument is a string to replace any matches.
- The second is the string for the regular expression.
The sub() method returns a string with the substitutions applied:
`python
names_regex = re.compile(r'Agent \w+')
names_regex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent Bob.')
'CENSORED gave the secret documents to CENSORED.'
`
Another example:
`python
agent_names_regex = re.compile(r'Agent (\w)\w*')
agent_names_regex.sub(r'\1*', 'Agent Alice told Agent Carol that Agent Eve knew Agent Bob was a double agent.')
A* told C**** that E**** knew B**** was a double agent.'
`
Managing Complex Regexes
To tell the re.compile() function to ignore whitespace and comments inside the regular expression string, “verbose mode” can be enabled by passing the variable re.VERBOSE as the second argument to re.compile().
Now instead of a hard-to-read regular expression like this:
python
phone_regex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}(\s*(ext|x|ext.)\s*\d{2,5})?)')
you can spread the regular expression over multiple lines with comments like this:
python
phone_regex = re.compile(r'''(
(\d{3}|\(\d{3}\))? # area code
(\s|-|\.)? # separator
\d{3} # first 3 digits
(\s|-|\.) # separator
\d{4} # last 4 digits
(\s*(ext|x|ext.)\s*\d{2,5})? # extension
)''', re.VERBOSE)
Handling File and Directory Paths
There are two main modules in Python that deals with path manipulation.
One is the os.path
module and the other is the pathlib
module.
The pathlib
module was added in Python 3.4, offering an object-oriented way
to handle file system paths.
Backslash on Windows and Forward Slash on OS X and Linux
On Windows, paths are written using backslashes (\
) as the separator between
folder names. On Unix based operating system such as macOS, Linux, and BSDs,
the forward slash (/
) is used as the path separator. Joining paths can be
a headache if your code needs to work on different platforms.
Fortunately, Python provides easy ways to handle this. We will showcase
how to deal with this with both os.path.join
and pathlib.Path.joinpath
Using os.path.join
on Windows:
`python
import os
os.path.join('usr', 'bin', 'spam')
'usr\bin\spam'
`
And using pathlib
on *nix:
`python
from pathlib import Path
print(Path('usr').joinpath('bin').joinpath('spam'))
usr/bin/spam
`
pathlib
also provides a shortcut to joinpath using the /
operator:
`python
from pathlib import Path
print(Path('usr') / 'bin' / 'spam')
usr/bin/spam
`
Notice the path separator is different between Windows and Unix based operating
system, that's why you want to use one of the above methods instead of
adding strings together to join paths together.
Joining paths is helpful if you need to create different file paths under
the same directory.
Using os.path.join
on Windows:
`python
my_files = ['accounts.txt', 'details.csv', 'invite.docx']
for filename in my_files:
print(os.path.join('C:\Users\asweigart', filename))
C:\Users\asweigart\accounts.txt
C:\Users\asweigart\details.csv
C:\Users\asweigart\invite.docx
`
Using pathlib
on *nix:
`python
my_files = ['accounts.txt', 'details.csv', 'invite.docx']
home = Path.home()
for filename in my_files:
print(home / filename)
/home/asweigart/accounts.txt
/home/asweigart/details.csv
/home/asweigart/invite.docx
`
The Current Working Directory
Using os
on Windows:
`python
import os
os.getcwd()
'C:\Python34'
os.chdir('C:\Windows\System32')os.getcwd()
'C:\Windows\System32'
`
Using pathlib
on *nix:
`python
from pathlib import Path
from os import chdirprint(Path.cwd())
/home/asweigartchdir('/usr/lib/python3.6')
print(Path.cwd())
/usr/lib/python3.6
`
Creating New Folders
Using os
on Windows:
`python
import os
os.makedirs('C:\delicious\walnut\waffles')
`
Using pathlib
on *nix:
`python
from pathlib import Path
cwd = Path.cwd()
(cwd / 'delicious' / 'walnut' / 'waffles').mkdir()
Traceback (most recent call last):
File "", line 1, in
File "/usr/lib/python3.6/pathlib.py", line 1226, in mkdir
self._accessor.mkdir(self, mode)
File "/usr/lib/python3.6/pathlib.py", line 387, in wrapped
return strfunc(str(pathobj), *args)
FileNotFoundError: [Errno 2] No such file or directory: '/home/asweigart/delicious/walnut/waffles'
`
Oh no, we got a nasty error! The reason is that the 'delicious' directory does
not exist, so we cannot make the 'walnut' and the 'waffles' directories under
it. To fix this, do:
`python
from pathlib import Path
cwd = Path.cwd()
(cwd / 'delicious' / 'walnut' / 'waffles').mkdir(parents=True)
`
And all is good :)
Absolute vs. Relative Paths
There are two ways to specify a file path.
- An absolute path, which always begins with the root folder
- A relative path, which is relative to the program’s current working directory
There are also the dot (.) and dot-dot (..) folders. These are not real folders but special names that can be used in a path. A single period (“dot”) for a folder name is shorthand for “this directory.” Two periods (“dot-dot”) means “the parent folder.”
Handling Absolute and Relative Paths
To see if a path is an absolute path:
Using os.path
on *nix:
`python
import os
os.path.isabs('/')
True
os.path.isabs('..')
False
`
Using pathlib
on *nix:
`python
from pathlib import Path
Path('/').is_absolute()
True
Path('..').is_absolute()
False
`
You can extract an absolute path with both os.path
and pathlib
Using os.path
on *nix:
`python
import os
os.getcwd()
'/home/asweigart'
os.path.abspath('..')
'/home'
`
Using pathlib
on *nix:
python
from pathlib import Path
print(Path.cwd())
/home/asweigart
print(Path('..').resolve())
/home
You can get a relative path from a starting path to another path.
Using os.path
on *nix:
`python
import os
os.path.relpath('/etc/passwd', '/')
'etc/passwd'
`
Using pathlib
on *nix:
`python
from pathlib import Path
print(Path('/etc/passwd').relative_to('/'))
etc/passwd
`
Checking Path Validity
Checking if a file/directory exists:
Using os.path
on *nix:
`python
import os
os.path.exists('.')
True
os.path.exists('setup.py')
True
os.path.exists('/etc')
True
os.path.exists('nonexistentfile')
False
`
Using pathlib
on *nix:
`python
from pathlib import Path
Path('.').exists()
True
Path('setup.py').exists()
True
Path('/etc').exists()
True
Path('nonexistentfile').exists()
False
`
Checking if a path is a file:
Using os.path
on *nix:
`python
import os
os.path.isfile('setup.py')
True
os.path.isfile('/home')
False
os.path.isfile('nonexistentfile')
False
`
Using pathlib
on *nix:
`python
from pathlib import Path
Path('setup.py').is_file()
True
Path('/home').is_file()
False
Path('nonexistentfile').is_file()
False
`
Checking if a path is a directory:
Using os.path
on *nix:
`python
import os
os.path.isdir('/')
True
os.path.isdir('setup.py')
False
os.path.isdir('/spam')
False
`
Using pathlib
on *nix:
`python
from pathlib import Path
Path('/').is_dir()
True
Path('setup.py').is_dir()
False
Path('/spam').is_dir()
False
`
Finding File Sizes and Folder Contents
Getting a file's size in bytes:
Using os.path
on Windows:
`python
import os
os.path.getsize('C:\Windows\System32\calc.exe')
776192
`
Using pathlib
on *nix:
`python
from pathlib import Path
stat = Path('/bin/python3.6').stat()
print(stat) # stat contains some other information about the file as well
os.stat_result(st_mode=33261, st_ino=141087, st_dev=2051, st_nlink=2, st_uid=0,
--snip--
st_gid=0, st_size=10024, st_atime=1517725562, st_mtime=1515119809, st_ctime=1517261276)
print(stat.st_size) # size in bytes
10024
`
Listing directory contents using os.listdir
on Windows:
`python
import os
os.listdir('C:\Windows\System32')
['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',
--snip--
'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']
`
Listing directory contents using pathlib
on *nix:
`python
from pathlib import Path
for f in Path('/usr/bin').iterdir():
print(f)
...
/usr/bin/tiff2rgba
/usr/bin/iconv
/usr/bin/ldd
/usr/bin/cache_restore
/usr/bin/udiskie
/usr/bin/unix2dos
/usr/bin/t1reencode
/usr/bin/epstopdf
/usr/bin/idle3
...
`
To find the total size of all the files in this directory:
WARNING: Directories themselves also have a size! So you might want to
check for whether a path is a file or directory using the methods in the methods discussed in the above section!
Using os.path.getsize()
and os.listdir()
together on Windows:
`python
import os
total_size = 0for filename in os.listdir('C:\Windows\System32'):
total_size = total_size + os.path.getsize(os.path.join('C:\Windows\System32', filename))print(total_size)
1117846456
`
Using pathlib
on *nix:
`python
from pathlib import Path
total_size = 0for sub_path in Path('/usr/bin').iterdir():
... total_size += sub_path.stat().st_sizeprint(total_size)
1903178911
`
Copying Files and Folders
The shutil module provides functions for copying files, as well as entire folders.
`python
import shutil, os
os.chdir('C:\')
shutil.copy('C:\spam.txt', 'C:\delicious')
'C:\delicious\spam.txt'shutil.copy('eggs.txt', 'C:\delicious\eggs2.txt')
'C:\delicious\eggs2.txt'
`
While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and every folder and file contained in it:
`python
import shutil, os
os.chdir('C:\')
shutil.copytree('C:\bacon', 'C:\bacon_backup')
'C:\bacon_backup'
`
Moving and Renaming Files and Folders
`python
import shutil
shutil.move('C:\bacon.txt', 'C:\eggs')
'C:\eggs\bacon.txt'
`
The destination path can also specify a filename. In the following example, the source file is moved and renamed:
`python
shutil.move('C:\bacon.txt', 'C:\eggs\new_bacon.txt')
'C:\eggs\new_bacon.txt'
`
If there is no eggs folder, then move() will rename bacon.txt to a file named eggs.
`python
shutil.move('C:\bacon.txt', 'C:\eggs')
'C:\eggs'
`
Permanently Deleting Files and Folders
Calling os.unlink(path) or Path.unlink() will delete the file at path.
Calling os.rmdir(path) or Path.rmdir() will delete the folder at path. This folder must be empty of any files or folders.
Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains will also be deleted.
Safe Deletes with the send2trash Module
You can install this module by running pip install send2trash from a Terminal window.
`python
import send2trash
with open('bacon.txt', 'a') as bacon_file: # creates the file
... bacon_file.write('Bacon is not a vegetable.')
25send2trash.send2trash('bacon.txt')
`
Walking a Directory Tree
`python
import os
for folder_name, subfolders, filenames in os.walk('C:\delicious'):
print('The current folder is {}'.format(folder_name))for subfolder in subfolders: print('SUBFOLDER OF {}: {}'.format(folder_name, subfolder)) for filename in filenames: print('FILE INSIDE {}: {}'.format(folder_name, filename)) print('')
The current folder is C:\delicious
SUBFOLDER OF C:\delicious: cats
SUBFOLDER OF C:\delicious: walnut
FILE INSIDE C:\delicious: spam.txt
The current folder is C:\delicious\cats
FILE INSIDE C:\delicious\cats: catnames.txt
FILE INSIDE C:\delicious\cats: zophie.jpg
The current folder is C:\delicious\walnut
SUBFOLDER OF C:\delicious\walnut: waffles
The current folder is C:\delicious\walnut\waffles
FILE INSIDE C:\delicious\walnut\waffles: butter.txt
`
pathlib
provides a lot more functionality than the ones listed above,
like getting file name, getting file extension, reading/writing a file without
manually opening it, etc. Check out the
official documentation
if you want to know more!
Reading and Writing Files
The File Reading/Writing Process
To read/write to a file in Python, you will want to use the with
statement, which will close the file for you after you are done.
Opening and reading files with the open() function
`python
with open('C:\Users\your_home_folder\hello.txt') as hello_file:
... hello_content = hello_file.read()
hello_content
'Hello World!'Alternatively, you can use the readlines() method to get a list of string values from the file, one string for each line of text:
with open('sonnet29.txt') as sonnet_file:
... sonnet_file.readlines()
[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my
outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And
look upon myself and curse my fate,']You can also iterate through the file line by line:
with open('sonnet29.txt') as sonnet_file:
... for line in sonnet_file: # note the new line character will be included in the line
... print(line, end='')
When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself and curse my fate,
`
Writing to Files
`python
with open('bacon.txt', 'w') as bacon_file:
... bacon_file.write('Hello world!\n')
13with open('bacon.txt', 'a') as bacon_file:
... bacon_file.write('Bacon is not a vegetable.')
25with open('bacon.txt') as bacon_file:
... content = bacon_file.read()print(content)
Hello world!
Bacon is not a vegetable.
`
Saving Variables with the shelve Module
To save variables:
`python
import shelve
cats = ['Zophie', 'Pooka', 'Simon']
with shelve.open('mydata') as shelf_file:
... shelf_file['cats'] = cats
`
To open and read variables:
`python
with shelve.open('mydata') as shelf_file:
... print(type(shelf_file))
... print(shelf_file['cats'])
['Zophie', 'Pooka', 'Simon']
`
Just like dictionaries, shelf values have keys() and values() methods that will return list-like values of the keys and values in the shelf. Since these methods return list-like values instead of true lists, you should pass them to the list() function to get them in list form.
`python
with shelve.open('mydata') as shelf_file:
... print(list(shelf_file.keys()))
... print(list(shelf_file.values()))
['cats']
[['Zophie', 'Pooka', 'Simon']]
`
Saving Variables with the pprint.pformat() Function
`python
import pprint
cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]
pprint.pformat(cats)
"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"with open('myCats.py', 'w') as file_obj:
... file_obj.write('cats = {}\n'.format(pprint.pformat(cats)))
83
`
Reading ZIP Files
`python
import zipfile, os
os.chdir('C:\') # move to the folder with example.zip
with zipfile.ZipFile('example.zip') as example_zip:
... print(example_zip.namelist())
... spam_info = example_zip.getinfo('spam.txt')
... print(spam_info.file_size)
... print(spam_info.compress_size)
... print('Compressed file is %sx smaller!' % (round(spam_info.file_size / spam_info.compress_size, 2)))
['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']
13908
3828
'Compressed file is 3.63x smaller!'
`
Extracting from ZIP Files
The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file into the current working directory.
`python
import zipfile, os
os.chdir('C:\') # move to the folder with example.zip
with zipfile.ZipFile('example.zip') as example_zip:
... example_zip.extractall()
`
The extract() method for ZipFile objects will extract a single file from the ZIP file. Continue the interactive shell example:
`python
with zipfile.ZipFile('example.zip') as example_zip:
... print(example_zip.extract('spam.txt'))
... print(example_zip.extract('spam.txt', 'C:\some\new\folders'))
'C:\spam.txt'
'C:\some\new\folders\spam.txt'
`
Creating and Adding to ZIP Files
`python
import zipfile
with zipfile.ZipFile('new.zip', 'w') as new_zip:
... new_zip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)
`
This code will create a new ZIP file named new.zip that has the compressed contents of spam.txt.
JSON, YAML and configuration files
JSON
Open a JSON file with:
python
import json
with open("filename.json", "r") as f:
content = json.loads(f.read())
Write a JSON file with:
`python
import json
content = {"name": "Joe", "age": 20}
with open("filename.json", "w") as f:
f.write(json.dumps(content, indent=2))
`
YAML
Compared to JSON, YAML allows for much better human maintainability and gives you the option to add comments.
It is a convenient choice for configuration files where humans will have to edit it.
There are two main libraries allowing to access to YAML files:
Install them using pip install
in your virtual environment.
The first one it easier to use but the second one, Ruamel, implements much better the YAML
specification, and allow for example to modify a YAML content without altering comments.
Open a YAML file with:
`python
from ruamel.yaml import YAML
with open("filename.yaml") as f:
yaml=YAML()
yaml.load(f)
`
Anyconfig
Anyconfig is a very handy package allowing to abstract completely the underlying configuration file format. It allows to load a Python dictionary from JSON, YAML, TOML, and so on.
Install it with:
bash
pip install anyconfig
Usage:
`python
import anyconfig
conf1 = anyconfig.load("/path/to/foo/conf.d/a.yml")
`
Debugging
Raising Exceptions
Exceptions are raised with a raise statement. In code, a raise statement consists of the following:
- The raise keyword
- A call to the Exception() function
- A string with a helpful error message passed to the Exception() function
`python
raise Exception('This is the error message.')
Traceback (most recent call last):
File "", line 1, in
raise Exception('This is the error message.')
Exception: This is the error message.
`
Often it’s the code that calls the function, not the function itself, that knows how to handle an exception. So you will commonly see a raise statement inside a function and the try and except statements in the code calling the function.
python
def box_print(symbol, width, height):
if len(symbol) != 1:
raise Exception('Symbol must be a single character string.')
if width <= 2:
raise Exception('Width must be greater than 2.')
if height <= 2:
raise Exception('Height must be greater than 2.')
print(symbol * width)
for i in range(height - 2):
print(symbol + (' ' * (width - 2)) + symbol)
print(symbol * width)
for sym, w, h in (('*', 4, 4), ('O', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)):
try:
box_print(sym, w, h)
except Exception as err:
print('An exception happened: ' + str(err))
Getting the Traceback as a String
The traceback is displayed by Python whenever a raised exception goes unhandled. But can also obtain it as a string by calling traceback.format_exc(). This function is useful if you want the information from an exception’s traceback but also want an except statement to gracefully handle the exception. You will need to import Python’s traceback module before calling this function.
`python
import traceback
try:
raise Exception('This is the error message.')
except:
with open('errorInfo.txt', 'w') as error_file:
error_file.write(traceback.format_exc())
print('The traceback info was written to errorInfo.txt.')
116
The traceback info was written to errorInfo.txt.
`
The 116 is the return value from the write() method, since 116 characters were written to the file. The traceback text was written to errorInfo.txt.
Traceback (most recent call last):
File "<pyshell#28>", line 2, in <module>
Exception: This is the error message.
Assertions
An assertion is a sanity check to make sure your code isn’t doing something obviously wrong. These sanity checks are performed by assert statements. If the sanity check fails, then an AssertionError exception is raised. In code, an assert statement consists of the following:
- The assert keyword
- A condition (that is, an expression that evaluates to True or False)
- A comma
- A string to display when the condition is False
`python
pod_bay_door_status = 'open'
assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'
pod_bay_door_status = 'I\'m sorry, Dave. I\'m afraid I can\'t do that.'
assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'
Traceback (most recent call last):
File "", line 1, in
assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'
AssertionError: The pod bay doors need to be "open".
`
In plain English, an assert statement says, “I assert that this condition holds true, and if not, there is a bug somewhere in the program.” Unlike exceptions, your code should not handle assert statements with try and except; if an assert fails, your program should crash. By failing fast like this, you shorten the time between the original cause of the bug and when you first notice the bug. This will reduce the amount of code you will have to check before finding the code that’s causing the bug.
Disabling Assertions
Assertions can be disabled by passing the -O option when running Python.
Logging
To enable the logging module to display log messages on your screen as your program runs, copy the following to the top of your program (but under the #! python shebang line):
`python
import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s- %(message)s')
`
Say you wrote a function to calculate the factorial of a number. In mathematics, factorial 4 is 1 × 2 × 3 × 4, or 24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7, or 5,040. Open a new file editor window and enter the following code. It has a bug in it, but you will also enter several log messages to help yourself figure out what is going wrong. Save the program as factorialLog.py.
`python
import logging
logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s- %(message)s')
logging.debug('Start of program')
def factorial(n):
logging.debug('Start of factorial(%s)' % (n)) total = 1 for i in range(1, n + 1): total *= i logging.debug('i is ' + str(i) + ', total is ' + str(total)) logging.debug('End of factorial(%s)' % (n)) return total
print(factorial(5))
logging.debug('End of program')
2015-05-23 16:20:12,664 - DEBUG - Start of program
2015-05-23 16:20:12,664 - DEBUG - Start of factorial(5)
2015-05-23 16:20:12,665 - DEBUG - i is 0, total is 0
2015-05-23 16:20:12,668 - DEBUG - i is 1, total is 0
2015-05-23 16:20:12,670 - DEBUG - i is 2, total is 0
2015-05-23 16:20:12,673 - DEBUG - i is 3, total is 0
2015-05-23 16:20:12,675 - DEBUG - i is 4, total is 0
2015-05-23 16:20:12,678 - DEBUG - i is 5, total is 0
2015-05-23 16:20:12,680 - DEBUG - End of factorial(5)
0
2015-05-23 16:20:12,684 - DEBUG - End of program
`
Logging Levels
Logging levels provide a way to categorize your log messages by importance. There are five logging levels, described in Table 10-1 from least to most important. Messages can be logged at each level using a different logging function.
Level | Logging Function | Description |
---|---|---|
DEBUG |
logging.debug() |
The lowest level. Used for small details. Usually you care about these messages only when diagnosing problems. |
INFO |
logging.info() |
Used to record information on general events in your program or confirm that things are working at their point in the program. |
WARNING |
logging.warning() |
Used to indicate a potential problem that doesn’t prevent the program from working but might do so in the future. |
ERROR |
logging.error() |
Used to record an error that caused the program to fail to do something. |
CRITICAL |
logging.critical() |
The highest level. Used to indicate a fatal error that has caused or is about to cause the program to stop running entirely. |
Disabling Logging
After you’ve debugged your program, you probably don’t want all these log messages cluttering the screen. The logging.disable() function disables these so that you don’t have to go into your program and remove all the logging calls by hand.
`python
import logging
logging.basicConfig(level=logging.INFO, format=' %(asctime)s -%(levelname)s - %(message)s')
logging.critical('Critical error! Critical error!')
2015-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!logging.disable(logging.CRITICAL)
logging.critical('Critical error! Critical error!')
logging.error('Error! Error!')
`
Logging to a File
Instead of displaying the log messages to the screen, you can write them to a text file. The logging.basicConfig() function takes a filename keyword argument, like so:
`python
import logging
logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
`
Lambda Functions
This function:
`python
def add(x, y):
return x + yadd(5, 3)
8
`
Is equivalent to the lambda function:
`python
add = lambda x, y: x + y
add(5, 3)
8
`
It's not even need to bind it to a name like add before:
`python
(lambda x, y: x + y)(5, 3)
8
`
Like regular nested functions, lambdas also work as lexical closures:
`python
def make_adder(n):
return lambda x: x + nplus_3 = make_adder(3)
plus_5 = make_adder(5)plus_3(4)
7
plus_5(4)
9
`
Note: lambda can only evaluate an expression, like a single line of code.
Ternary Conditional Operator
Many programming languages have a ternary operator, which define a conditional expression. The most common usage is to make a terse simple conditional assignment statement. In other words, it offers one-line code to evaluate the first expression if the condition is true, otherwise it evaluates the second expression.
<expression1> if <condition> else <expression2>
Example:
`python
age = 15
print('kid' if age < 18 else 'adult')
kid
`
Ternary operators can be chained:
`python
age = 15
print('kid' if age < 13 else 'teenager' if age < 18 else 'adult')
teenager
`
The code above is equivalent to:
python
if age < 18:
if age < 13:
print('kid')
else:
print('teenager')
else:
print('adult')
args and kwargs
The names args and kwargs
are arbitrary - the important thing are the *
and **
operators. They can mean:
In a function declaration,
*
means “pack all remaining positional arguments into a tuple named<name>
”, while**
is the same for keyword arguments (except it uses a dictionary, not a tuple).In a function call,
*
means “unpack tuple or list named<name>
to positional arguments at this position”, while**
is the same for keyword arguments.
For example you can make a function that you can use to call any other function, no matter what parameters it has:
python
def forward(f, *args, **kwargs):
return f(*args, **kwargs)
Inside forward, args is a tuple (of all positional arguments except the first one, because we specified it - the f), kwargs is a dict. Then we call f and unpack them so they become normal arguments to f.
You use *args
when you have an indefinite amount of positional arguments.
`python
def fruits(*args):
for fruit in args:
print(fruit)fruits("apples", "bananas", "grapes")
"apples"
"bananas"
"grapes"
`
Similarly, you use **kwargs
when you have an indefinite number of keyword arguments.
`python
def fruit(**kwargs):
for key, value in kwargs.items():
print("{0}: {1}".format(key, value))fruit(name = "apple", color = "red")
name: apple
color: red
`
`python
def show(arg1, arg2, *args, kwarg1=None, kwarg2=None, **kwargs):
print(arg1)
print(arg2)
print(args)
print(kwarg1)
print(kwarg2)
print(kwargs)data1 = [1,2,3]
data2 = [4,5,6]
data3 = {'a':7,'b':8,'c':9}show(data1,*data2, kwarg1="python",kwarg2="cheatsheet",*data3)
1
2
(3, 4, 5, 6)
python
cheatsheet
{'a': 7, 'b': 8, 'c': 9}show(*data1, *data2, **data3)
1
2
(3, 4, 5, 6)
None
None
{'a': 7, 'b': 8, 'c': 9}
If you do not specify ** for kwargs
show(*data1, *data2, *data3)
1
2
(3, 4, 5, 6, "a", "b", "c")
None
None
{}
`
Things to Remember(args)
- Functions can accept a variable number of positional arguments by using
*args
in the def statement. - You can use the items from a sequence as the positional arguments for a function with the
*
operator. - Using the
*
operator with a generator may cause your program to run out of memory and crash. - Adding new positional parameters to functions that accept
*args
can introduce hard-to-find bugs.
Things to Remember(kwargs)
- Function arguments can be specified by position or by keyword.
- Keywords make it clear what the purpose of each argument is when it would be confusing with only positional arguments.
- Keyword arguments with default values make it easy to add new behaviors to a function, especially when the function has existing callers.
- Optional keyword arguments should always be passed by keyword instead of by position.
Context Manager
While Python's context managers are widely used, few understand the purpose behind their use. These statements, commonly used with reading and writing files, assist the application in conserving system memory and improve resource management by ensuring specific resources are only in use for certain processes.
with statement
A context manager is an object that is notified when a context (a block of code) starts and ends. You commonly use one with the with statement. It takes care of the notifying.
For example, file objects are context managers. When a context ends, the file object is closed automatically:
`python
with open(filename) as f:
file_contents = f.read()
the open_file object has automatically been closed.
`
Anything that ends execution of the block causes the context manager's exit method to be called. This includes exceptions, and can be useful when an error causes you to prematurely exit from an open file or connection. Exiting a script without properly closing files/connections is a bad idea, that may cause data loss or other problems. By using a context manager you can ensure that precautions are always taken to prevent damage or loss in this way.
Writing your own contextmanager using generator syntax
It is also possible to write a context manager using generator syntax thanks to the contextlib.contextmanager
decorator:
`python
import contextlib
@contextlib.contextmanager
... def context_manager(num):
... print('Enter')
... yield num + 1
... print('Exit')
with context_manager(2) as cm:
... # the following instructions are run when the 'yield' point of the context
... # manager is reached.
... # 'cm' will have the value that was yielded
... print('Right in the middle with cm = {}'.format(cm))
Enter
Right in the middle with cm = 3
Exit`
__main__
Top-level script environment
__main__
is the name of the scope in which top-level code executes.
A module’s name is set equal to __main__
when read from standard input, a script, or from an interactive prompt.
A module can discover whether or not it is running in the main scope by checking its own __name__
, which allows a common idiom for conditionally executing code in a module when it is run as a script or with python -m
but not when it is imported:
`python
if name == "main":
... # execute only if run as a script
... main()
`
For a package, the same effect can be achieved by including a main.py module, the contents of which will be executed when the module is run with -m
For example we are developing script which is designed to be used as module, we should do:
`python
Python program to execute function directly
def add(a, b):
... return a+b
...
add(10, 20) # we can test it by calling the function save it as calculate.py
30Now if we want to use that module by importing we have to comment out our call,
Instead we can write like this in calculate.py
if name == "main":
... add(3, 5)
...
import calculate
calculate.add(3, 5)
8
`
Advantages
- Every Python module has it’s
__name__
defined and if this is__main__
, it implies that the module is being run standalone by the user and we can do corresponding appropriate actions. - If you import this script as a module in another script, the name is set to the name of the script/module.
- Python files can act as either reusable modules, or as standalone programs.
- if
__name__ == “main”:
is used to execute some code only if the file was run directly, and not imported.
setup.py
The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils. The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various commands that operate on your modules do the right thing.
The setup.py
file is at the heart of a Python project. It describes all of the metadata about your project. There a quite a few fields you can add to a project to give it a rich set of metadata describing the project. However, there are only three required fields: name, version, and packages. The name field must be unique if you wish to publish your package on the Python Package Index (PyPI). The version field keeps track of different releases of the project. The packages field describes where you’ve put the Python source code within your project.
This allows you to easily install Python packages. Often it's enough to write:
bash
python setup.py install
and module will install itself.
Our initial setup.py will also include information about the license and will re-use the README.txt file for the long_description field. This will look like:
`python
from distutils.core import setup
setup(
... name='pythonCheatsheet',
... version='0.1',
... packages=['pipenv',],
... license='MIT',
... long_description=open('README.txt').read(),
... )
`
Find more information visit http://docs.python.org/install/index.html.
Dataclasses
Dataclasses
are python classes but are suited for storing data objects.
This module provides a decorator and functions for automatically adding generated special methods such as __init__()
and __repr__()
to user-defined classes.
Features
They store data and represent a certain data type. Ex: A number. For people familiar with ORMs, a model instance is a data object. It represents a specific kind of entity. It holds attributes that define or represent the entity.
They can be compared to other objects of the same type. Ex: A number can be greater than, less than, or equal to another number.
Python 3.7 provides a decorator dataclass that is used to convert a class into a dataclass.
python 2.7
`python
class Number:
... def init(self, val):
... self.val = val
...
obj = Number(2)
obj.val
2
`
with dataclass
`python
@dataclass
... class Number:
... val: int
...
obj = Number(2)
obj.val
2
`
Default values
It is easy to add default values to the fields of your data class.
`python
@dataclass
... class Product:
... name: str
... count: int = 0
... price: float = 0.0
...
obj = Product("Python")
obj.name
Python
obj.count
0
obj.price
0.0
`
Type hints
It is mandatory to define the data type in dataclass. However, If you don't want specify the datatype then, use typing.Any
.
`python
from dataclasses import dataclass
from typing import Any@dataclass
... class WithoutExplicitTypes:
... name: Any
... value: Any = 42
...
`
Virtual Environment
The use of a Virtual Environment is to test python code in encapsulated environments and to also avoid filling the base Python installation with libraries we might use for only one project.
virtualenv
-
Install virtualenv
pip install virtualenv
-
Install virtualenvwrapper-win (Windows)
pip install virtualenvwrapper-win
Usage:
-
Make a Virtual Environment
mkvirtualenv HelloWold
Anything we install now will be specific to this project. And available to the projects we connect to this environment.
-
Set Project Directory
To bind our virtualenv with our current working directory we simply enter:
setprojectdir .
-
Deactivate
To move onto something else in the command line type ‘deactivate’ to deactivate your environment.
deactivate
Notice how the parenthesis disappear.
-
Workon
Open up the command prompt and type ‘workon HelloWold’ to activate the environment and move into your root project folder
workon HelloWold
poetry
Poetry is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you.
-
Install Poetry
pip install --user poetry
-
Create a new project
poetry new my-project
This will create a my-project directory:
my-project ├── pyproject.toml ├── README.rst ├── poetry_demo │ └── __init__.py └── tests ├── __init__.py └── test_poetry_demo.py
The pyproject.toml file will orchestrate your project and its dependencies:
[tool.poetry] name = "my-project" version = "0.1.0" description = "" authors = ["your name <your@mail.com>"] [tool.poetry.dependencies] python = "*" [tool.poetry.dev-dependencies] pytest = "^3.4"
-
Packages
To add dependencies to your project, you can specify them in the tool.poetry.dependencies section:
[tool.poetry.dependencies] pendulum = "^1.4"
Also, instead of modifying the pyproject.toml file by hand, you can use the add command and it will automatically find a suitable version constraint.
$ poetry add pendulum
To install the dependencies listed in the pyproject.toml:
poetry install
To remove dependencies:
poetry remove pendulum
For more information, check the documentation.
pipenv
Pipenv is a tool that aims to bring the best of all packaging worlds (bundler, composer, npm, cargo, yarn, etc.) to the Python world. Windows is a first-class citizen, in our world.
-
Install pipenv
pip install pipenv
-
Enter your Project directory and install the Packages for your project
cd my_project pipenv install <package>
Pipenv will install your package and create a Pipfile for you in your project’s directory. The Pipfile is used to track which dependencies your project needs in case you need to re-install them.
-
Uninstall Packages
pipenv uninstall <package>
-
Activate the Virtual Environment associated with your Python project
pipenv shell
-
Exit the Virtual Environment
exit
Find more information and a video in docs.pipenv.org.
anaconda
Anaconda is another popular tool to manage python packages.
Where packages, notebooks, projects and environments are shared.
Your place for free public conda package hosting.
Usage:
-
Make a Virtual Environment
conda create -n HelloWorld
-
To use the Virtual Environment, activate it by:
conda activate HelloWorld
Anything installed now will be specific to the project HelloWorld
-
Exit the Virtual Environment
conda deactivate
This content originally appeared on DEV Community and was authored by Envoy-VC
Envoy-VC | Sciencx (2021-07-17T13:46:02+00:00) Python Cheatsheet. Retrieved from https://www.scien.cx/2021/07/17/python-cheatsheet/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.