This content originally appeared on DEV Community 👩‍💻👨‍💻 and was authored by Jorge Tovar
Completable Futures
Repository : https://github.com/jorgetovar/completable_futures
Do you know that parallel stream in Java has performance limitations due to Java will use the number of available processors?
If you want to take advance of the latest Java features and overcome this problem, use CompletableFuture.
You can create a ThreadPool greater than the number of available processors and reap the performance improvements.
CompletableFuture uses lambdas, and the code is expressive.
My machine has 8 processors
@Test
public void numberOfProcessors() {
assertThat(availableProcessors, is(equalTo(8)));
}
1 Second: CompletableFuture implementation has the best performance
@Test
public void completableFuture_whenBooksAreMoreThanNumberOfProcessors() {
Executor executor = Executors.newFixedThreadPool(10);
long start = System.currentTimeMillis();
var futureCategories = getBooks()
.map(e -> CompletableFuture.supplyAsync(() -> BookClassifier.apply(e), executor))
.toList();
var categories = futureCategories.stream()
.map(CompletableFuture::join).toList();
int timeInSeconds = getTimeInSeconds(start);
assertThat(categories.size(), is(equalTo(10)));
assertThat(timeInSeconds, OrderingComparison.greaterThanOrEqualTo(1));
assertThat(timeInSeconds, OrderingComparison.lessThanOrEqualTo(1));
}
2 Seconds: Parallel Stream implementation has some limitations
Because our current limitation would have to process 8 books first and then 2 more
@Test
public void parallelStream_whenBooksAreMoreThanNumberOfProcessors() {
long start = System.currentTimeMillis();
var categories = getBooks()
.parallel()
.map(BookClassifier::apply)
.toList();
int timeInSeconds = getTimeInSeconds(start);
assertThat(categories.size(), is(equalTo(10)));
assertThat(timeInSeconds, OrderingComparison.greaterThanOrEqualTo(2));
assertThat(timeInSeconds, OrderingComparison.lessThanOrEqualTo(2));
}
1 Second: Parallel Stream implementation within the limitations
Because we are within the limit of the available processors
@Test
public void parallelStream_whenBooksAreLessThanNumberOfProcessors() {
int limit = availableProcessors - 1;
long start = System.currentTimeMillis();
var categories = getBooks()
.limit(limit)
.parallel()
.map(BookClassifier::apply)
.toList();
int timeInSeconds = getTimeInSeconds(start);
System.out.printf("The operation took %s ms%n", timeInSeconds - start);
assertThat(categories.size(), is(equalTo(limit)));
assertThat(timeInSeconds, OrderingComparison.greaterThanOrEqualTo(1));
assertThat(timeInSeconds, OrderingComparison.lessThanOrEqualTo(1));
}
10 Seconds: Stream Synchronous implementation has the worst performance
@Test
public void stream_whenBooksAreLessThanNumberOfProcessors() {
long start = System.currentTimeMillis();
var categories = getBooks()
.map(BookClassifier::apply).toList();
int timeInSeconds = getTimeInSeconds(start);
assertThat(categories.size(), is(equalTo(10)));
assertThat(timeInSeconds, OrderingComparison.greaterThanOrEqualTo(9));
assertThat(timeInSeconds, OrderingComparison.lessThanOrEqualTo(10));
System.out.printf("The stream operation took %s ms%n", timeInSeconds);
}
This content originally appeared on DEV Community 👩‍💻👨‍💻 and was authored by Jorge Tovar
Jorge Tovar | Sciencx (2022-09-13T22:09:07+00:00) Improve Performance with CompletableFuture in Java. Retrieved from https://www.scien.cx/2022/09/13/improve-performance-with-completablefuture-in-java/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.