This content originally appeared on HackerNoon and was authored by Editorialist
:::info Authors:
(1) Xiaohan Ding, Department of Computer Science, Virginia Tech, (e-mail: xiaohan@vt.edu);
(2) Mike Horning, Department of Communication, Virginia Tech, (e-mail: mhorning@vt.edu);
(3) Eugenia H. Rho, Department of Computer Science, Virginia Tech, (e-mail: eugenia@vt.edu ).
:::
Table of Links
Study 1: Evolution of Semantic Polarity in Broadcast Media Language (2010-2020)
Study 2: Words that Characterize Semantic Polarity between Fox News & CNN in 2020
Discussion and Ethics Statement
Appendix
\
\
\
\
\
References
Allen, J.; Howland, B.; Mobius, M.; Rothschild, D.; and Watts, D. J. 2020. Evaluating the fake news problem at the scale of the information ecosystem. Science Advances, 6(14): eaay3539. Barnard, S. R. 2018. Citizens at the Gates. Twitter, Networked Publics and The Transformation of American Journalism. Cham, Sveitsi: Palgrave Macmillan.
\ Cheung, Y.-W.; and Lai, K. S. 1995. Lag Order and Critical Values of the Augmented Dickey–Fuller Test. Journal of Business & Economic Statistics, 13(3): 277–280.
\ Chinn, S.; Hart, P. S.; and Soroka, S. 2020. Politicization and Polarization in Climate Change News Content, 1985-2017. Science Communication, 42(1): 112–129.
\ Dash, S.; Mishra, D.; Shekhawat, G.; and Pal, J. 2022. Divided We Rule: Influencer Polarization on Twitter during Political Crises in India. Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 16: 135–146.
\ Demszky, D.; Movshovitz-Attias, D.; Ko, J.; Cowen, A.; Nemade, G.; and Ravi, S. 2020. GoEmotions: A dataset of fine-grained emotions. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 4040–4054.
\ Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 4171–4186.
\ Dutta, S.; Ma, J.; and Choudhury, M. D. 2018. Measuring the Impact of Anxiety on Online Social Interactions. Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 12(1): 584–587.
\ Ebeling, R.; Saenz, C. A. C.; Nobre, J. C.; and Becker, K. 2022. Analysis of the Influence of Political Polarization in the Vaccination Stance: The Brazilian COVID-19 Scenario. Proceedings of the International AAAI Conference on Web and Social Media, 16: 159–170.
\ Entman, R. M. 2003. Cascading activation: Contesting the White House’s frame after 9/11. Political Communication,, 20(4): 415– 432.
\ Eveland, W. P.; Seo, M.; and Marton, K. 2002. Learning From the News in Campaign 2000: An Experimental Comparison of TV News, Newspapers, and Online News. Media Psychology, 4(4): 353–378.
\ Garimella, K.; Smith, T.; Weiss, R.; and West, R. 2021. Political Polarization in Online News Consumption. Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 15: 152–162.
\ Gentzkow, M.; Shapiro, J. M.; and Taddy, M. 2019. Measuring Group Differences in High-Dimensional Choices: Method and Application to Congressional Speech. Econometrica, 87(4): 1307–1340.
\ Granger, C. W. J. 1980. Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2: 329–352. Hamilton, W. L.; Leskovec, J.; and Jurafsky, D. 2016. Cultural Shift or Linguistic Drift? Comparing Two Computational Measures of Semantic Change. Conference on Empirical Methods in Natural Language Processing., 2116–2121.
\ Hoey, M. 2005. Lexical Priming: A new theory of words and language. London: Routledge.
\ Horning, M. 2018. The pundit problem: A look at bias and negativity in cable news coverage as the 2016 election came to a close. The 2016 American Presidential Campaign and the News, 77–99.
\ Jang, S. M.; and Hart, P. S. 2015. Polarized frames on “climate change” and “global warming” across countries and states: Evidence from Twitter big data. Global Environmental Change, 32: 11–17.
\ Kim, E.; Lelkes, Y.; and McCrain, J. 2022. Measuring dynamic media bias. Proceedings of the National Academy of Sciences, 119(32): e2202197119.
\ Kutuzov, A.; Øvrelid, L.; Szymanski, T.; and Velldal, E. 2018. Diachronic word embeddings and semantic shifts: a survey. In Proceedings of the 27th International Conference on Computational Linguistics, 1384–1397.
\ McCombs, M. 1997. Building Consensus: The News Media’s Agenda-Setting Roles. Political Communication, 14(4): 433–443.
\ McLeod, J. M.; Scheufele, D. A.; and Moy, P. 1999. Community, Communication, and Participation: The Role of Mass Media and Interpersonal Discussion in Local Political Participation. Political Communication, 16(3): 315–336.
\ Muise, D.; Hosseinmardi, H.; Howland, B.; Mobius, M.; Rothschild, D.; and Watts, D. J. 2022. Quantifying partisan news diets in Web and TV audiences. Science Advances, 8(28): eabn0083. Papacharissi, Z. 2009. Journalism and citizenship. Routledge London.
\ Polignano, M.; Basile, V.; Basile, P.; Gabrieli, G.; Vassallo, M.; and Bosco, C. 2022. A hybrid lexicon-based and neural approach for explainable polarity detection. Information Processing & Management, 59(5): 103058.
\ Recuero, R.; Soares, F. B.; and Gruzd, A. 2020. Hyperpartisanship, Disinformation and Political Conversations on Twitter: The Brazilian Presidential Election of 2018. Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), 14: 569–578.
\ Rogstad, I. 2016. Is Twitter just rehashing? Intermedia agenda setting between Twitter and mainstream media. Journal of Information Technology & Politics, 13(2): 142–158.
\ Russell Neuman, W.; Guggenheim, L.; Mo Jang, S.; and Bae, S. Y. 2014. The Dynamics of Public Attention: Agenda-Setting Theory Meets Big Data. Journal of Communication, 64(2): 193–214. Sap, M.; Card, D.; Gabriel, S.; Choi, Y.; and Smith, N. A. 2019. The Risk of Racial Bias in Hate Speech Detection. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 1668–1678.
\ Scheufele, D. A. 2000. Agenda-setting, priming, and framing revisited: Another look at cognitive effects of political communication. Mass communication & society, 3(2-3): 297–316.
\ Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference on Machine Learning, 3319–3328.
\ Tuba, M.; Akashe, S.; and Joshi, A., eds. 2020. Information and Communication Technology for Sustainable Development, volume 933. Advances in Intelligent Systems and Computing.
\ Westfall, J.; Van Boven, L.; Chambers, J. R.; and Judd, C. M. 2015. Perceiving Political Polarization in the United States: Party Identity Strength and Attitude Extremity Exacerbate the Perceived Partisan Divide. Perspectives on Psychological Science, 10(2): 145– 158.
\ Yang, M.; Wen, X.; Lin, Y.-R.; and Deng, L. 2017. Quantifying Content Polarization on Twitter. In 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC), 299– 308.
\ Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K. Q.; and Artzi, Y. 2020. BERTScore: Evaluating Text Generation with BERT. arXiv:1904.09675.
\
:::info This paper is available on arxiv under CC 4.0 license.
:::
\
This content originally appeared on HackerNoon and was authored by Editorialist
Editorialist | Sciencx (2024-06-20T00:44:05+00:00) Methodological Considerations in Semantic Polarization Research. Retrieved from https://www.scien.cx/2024/06/20/methodological-considerations-in-semantic-polarization-research/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.