This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*My post explains logical_and() and logical_or().
logical_xor() can do logical XOR with two of the 0D or more D tensors of zero or more elements, getting the 0D or more D tensor of zero or more boolean values as shown below:
*Memos:
-
logical_xor()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isother
(Required-Type:tensor
ofint
,float
,complex
orbool
). - There is
out
argument withtorch
(Optional-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
- Zero is
True
and nonzero isFalse
.
import torch
tensor1 = torch.tensor(True)
tensor2 = torch.tensor([[True, False, True, False],
[False, True, False, True]])
torch.logical_xor(input=tensor1, other=tensor2)
tensor1.logical_xor(other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[False, True, False, True],
# [True, False, True, False]])
tensor1 = torch.tensor(False)
tensor2 = torch.tensor([[True, False, True, False],
[False, True, False, True]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[True, False, True, False],
# [False, True, False, True]])
tensor1 = torch.tensor([True, False])
tensor2 = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, False]],
# [[True, True], [True, True]]])
tensor1 = torch.tensor([7, 0])
tensor2 = torch.tensor([[[1, 0], [-1, 0]],
[[0, 2], [0, -2]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, False]],
# [[True, True], [True, True]]])
tensor1 = torch.tensor([7.3, 0.3])
tensor2 = torch.tensor([[[1.3, 0.3], [-1.0, 0.0]],
[[0.3, 2.3], [0.0, -2.0]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, True]],
# [[False, False], [True, False]]])
tensor1 = torch.tensor([7.+3.j, 0.+3.j])
tensor2 = torch.tensor([[[1.+3.j, 0.+3.j], [-1.+0.j, 0.+0.j]],
[[0.+3.j, 2.+3.j], [0.+0.j, -2.+0.j]]])
torch.logical_xor(input=tensor1, other=tensor2)
torch.logical_xor(input=tensor2, other=tensor1)
# tensor([[[False, False], [False, True]],
# [[False, False], [True, False]]])
logical_not() can do logical NOT with the 0D or more D tensor of zero or more elements, getting the 0D or more D tensor of zero or more boolean values as shown below:
*Memos:
-
logical_not()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - There is
out
argument withtorch
(Optional-Type:tensor
): *Memos:-
out=
must be used. -
My post explains
out
argument.
-
- Zero is
True
and nonzero isFalse
.
import torch
my_tensor = torch.tensor(True)
torch.logical_not(input=my_tensor)
my_tensor.logical_not()
# tensor(False)
my_tensor = torch.tensor([True, False, True, False])
torch.logical_not(input=my_tensor)
# tensor([False, True, False, True])
my_tensor = torch.tensor([[True, False, True, False],
[False, True, False, True]])
torch.logical_not(input=my_tensor)
# tensor([[False, True, False, True],
# [True, False, True, False]])
my_tensor = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, True], [False, True]],
# [[True, False], [True, False]]])
my_tensor = torch.tensor([[[1, 0], [-1, 0]],
[[0, 2], [0, -2]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, True], [False, True]],
# [[True, False], [True, False]]])
my_tensor = torch.tensor([[[1.3, 0.3], [-1.0, 0.0]],
[[0.3, 2.3], [0.0, -2.0]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, False], [False, True]],
# [[False, False], [ True, False]]])
my_tensor = torch.tensor([[[1.+3.j, 0.+3.j], [-1.+0.j, 0.+0.j]],
[[0.+3.j, 2.+3.j], [0.+0.j, -2.+0.j]]])
torch.logical_not(input=my_tensor)
# tensor([[[False, False], [False, True]],
# [[False, False], [True, False]]])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito) | Sciencx (2024-07-15T01:53:35+00:00) logical_xor() and logical_not() in PyTorch. Retrieved from https://www.scien.cx/2024/07/15/logical_xor-and-logical_not-in-pytorch/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.