This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
- My post explains Pooling Layer.
- My post explains MaxPool1d().
- My post explains MaxPool2d().
- My post explains MaxPool3d().
- My post explains requires_grad.
AvgPool1d() can get the 2D or 3D tensor of the one or more values computed by 1D average pooling from the 2D or 3D tensor of one or more elements as shown below:
*Memos:
- The 1st argument for initialization is
kernel_size
(Required-Type:int
ortuple
orlist
ofint
). *It must be1 <= x
. - The 2nd argument for initialization is
stride
(Optional-Default:None
-Type:int
ortuple
orlist
ofint
): *Memos:- It must be
1 <= x
. - If
None
,kernel_size
is set.
- It must be
- The 3rd argument for initialization is
padding
(Optional-Default:0
-Type:int
ortuple
orlist
ofint
). *It must be0 <= x
. - The 4th argument for initialization is
ceil_mode
(Optional-Default:False
-Type:bool
). - The 5th argument for initialization is
count_include_pad
(Optional-Default:True
-Type:bool
). - The 1st argument is
input
(Required-Type:tensor
ofint
orfloat
). - The tensor's
requires_grad
which isFalse
by default is not set toTrue
byAvgPool1d()
.
import torch
from torch import nn
tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])
tensor1.requires_grad
# False
avgpool1d = nn.AvgPool1d(kernel_size=1)
tensor2 = avgpool1d(input=tensor1)
tensor2
# tensor([[8., -3., 0., 1., 5., -2.]])
tensor2.requires_grad
# False
avgpool1d
# AvgPool1d(kernel_size=(1,), stride=(1,), padding=(0,))
avgpool1d.kernel_size
# (1,)
avgpool1d.stride
# (1,)
avgpool1d.padding
# (0,)
avgpool1d.ceil_mode
# False
avgpool1d.count_include_pad
# True
avgpool1d = nn.AvgPool1d(kernel_size=1, stride=None, padding=0,
ceil_mode=False, count_include_pad=True)
avgpool1d(input=tensor1)
# tensor([[8., -3., 0., 1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=tensor1)
# tensor([[2.5000, 0.5000, 1.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=tensor1)
# tensor([[1.6667, 1.3333]])
avgpool1d = nn.AvgPool1d(kernel_size=4)
avgpool1d(input=tensor1)
# tensor([[1.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=5)
avgpool1d(input=tensor1)
# tensor([[2.2000]])
avgpool1d = nn.AvgPool1d(kernel_size=6)
avgpool1d(input=tensor1)
# tensor([[1.5000]])
my_tensor = torch.tensor([[8., -3., 0.],
[1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8., -3., 0.],
# [1., 5., -2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2)
avgpool1d(input=my_tensor)
# tensor([[2.5000],
# [3.0000]])
avgpool1d = nn.AvgPool1d(kernel_size=3)
avgpool1d(input=my_tensor)
# tensor([[1.6667],
# [1.3333]])
my_tensor = torch.tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[8.], [-3.], [0.], [1.], [5.], [-2.]])
avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[4.0000], [-1.5000], [0.0000], [0.5000], [2.5000], [-1.0000]])
avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[2.6667], [-1.0000], [0.0000], [0.3333], [1.6667], [-0.6667]])
avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[2.0000], [-0.7500], [0.0000], [0.2500], [1.2500], [-0.5000]])
avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[1.6000], [-0.6000], [0.0000], [0.2000], [1.0000], [-0.4000]])
etc.
my_tensor = torch.tensor([[[8.], [-3.], [0.]],
[[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8.], [-3.], [0.]],
# [[1.], [5.], [-2.]]])
avgpool1d = nn.AvgPool1d(kernel_size=2, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[4.0000], [-1.5000], [0.0000]],
# [[0.5000], [2.5000], [-1.0000]]])
avgpool1d = nn.AvgPool1d(kernel_size=3, padding=1)
avgpool1d(input=my_tensor)
# tensor([[[2.6667], [-1.0000], [0.0000]],
# [[0.3333], [1.6667], [-0.6667]]])
avgpool1d = nn.AvgPool1d(kernel_size=4, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[2.0000], [-0.7500], [0.0000]],
# [[0.2500], [1.2500], [-0.5000]]])
avgpool1d = nn.AvgPool1d(kernel_size=5, padding=2)
avgpool1d(input=my_tensor)
# tensor([[[1.6000], [-0.6000], [0.0000]],
# [[0.2000], [1.0000], [-0.4000]]])
etc.
my_tensor = torch.tensor([[[8], [-3], [0]],
[[1], [5], [-2]]])
avgpool1d = nn.AvgPool1d(kernel_size=1)
avgpool1d(input=my_tensor)
# tensor([[[8], [-3], [0]],
# [[1], [5], [-2]]])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Super Kai (Kazuya Ito) | Sciencx (2024-09-15T03:59:08+00:00) AvgPool1d() in PyTorch. Retrieved from https://www.scien.cx/2024/09/15/avgpool1d-in-pytorch/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.