Examining Gender Bias in Pair Programming: Insights from Empirical Studies

A review of empirical studies on pair programming highlights the impact of gender, skill level, and other factors on performance and collaboration, while revealing a gap in research specifically addressing gender bias in these settings.


This content originally appeared on HackerNoon and was authored by Pair Programming

Abstract and 1 Introduction

1.1 The twincode platform

1.2 Related Work

2 Research Questions

3 Variables

3.1 Independent Variables

3.2 Dependent Variables

3.3 Confounding Variables

4 Participants

5 Execution Plan and 5.1 Recruitment

5.2 Training and 5.3 Experiment Execution

5.4 Data Analysis

Acknowledgments and References

1.2 Related Work

Several literature reviews [10, 15, 21] have compiled the empirical research on using pair programming in higher education, with [6] being focused on distributed pair programming from a teaching perspective. By means of controlled experiments, remote and co–located pair programming are compared in [1, 22], showing comparable results. In most of the cases, the analyzed variables are related to performance in terms of time, quality, or code tests passed. Students perceptions have been also analyzed in terms of confidence, satisfaction, motivation, or personality [20].

\ Table 1 summarizes the empirical studies on the influence of gender in pair programming, including findings such as (i) same– gender pairs are more “democratic”; (ii) women working in pairs were more confident than those working solo; and (iii) in mixedgender, pairing women particularly do not benefit [15]. Although

\ Figure 1: twincode user interface for control group (left) and experimental group (right)

\ Table 1: Empirical studies about gender in pair programming

\ such studies reveal that gender seems to be a key factor in pair programming, none of them study gender bias in pair programming.

\ Many factors other than gender may affect the outcomes of remote programming sessions [2, 23]. Previous research on productive pairing looked at factors such as skill levels, autonomy in choosing one’s partner [25], and different personalities [11]. Nevertheless, the work on gender composition of pairs found conflicting results about whether same-gender or mixed-gender pairings are more effective [3, 4, 12, 16]. One possible explanation is that gender correlates with other dimensions that may affect the pairs’ collaboration, but these correlations may vary between different environments. For example, women in a class may, on average, have higher skill level than men because they had to face more societal barriers to enter the class. On the other hand, they may, on average, have lower skill level if women with no background are more actively recruited.

\

:::info Authors:

(1) Amador Durán, SCORE Lab, I3US Institute, Universidad de Sevilla, Sevilla, Spain (amador@us.es);

(2) Pablo Fernández, SCORE Lab, I3US Institute, Universidad de Sevilla, Sevilla, Spain (pablofm@us.es);

(3) Beatriz Bernárdez, I3US Institute, Universidad de Sevilla, Sevilla, Spain (beat@us.es);

(4) Nathaniel Weinman, Computer Science Division, University of California, Berkeley, Berkeley, CA, USA (nweinman@berkeley.edu);

(5) Aslı Akalın, Computer Science Division, University of California, Berkeley, Berkeley, CA, USA (asliakalin@berkeley.edu);

(6) Armando Fox, Computer Science Division, University of California, Berkeley, Berkeley, CA, USA (fox@berkeley.edu).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\


This content originally appeared on HackerNoon and was authored by Pair Programming


Print Share Comment Cite Upload Translate Updates
APA

Pair Programming | Sciencx (2024-09-15T20:30:04+00:00) Examining Gender Bias in Pair Programming: Insights from Empirical Studies. Retrieved from https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/

MLA
" » Examining Gender Bias in Pair Programming: Insights from Empirical Studies." Pair Programming | Sciencx - Sunday September 15, 2024, https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/
HARVARD
Pair Programming | Sciencx Sunday September 15, 2024 » Examining Gender Bias in Pair Programming: Insights from Empirical Studies., viewed ,<https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/>
VANCOUVER
Pair Programming | Sciencx - » Examining Gender Bias in Pair Programming: Insights from Empirical Studies. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/
CHICAGO
" » Examining Gender Bias in Pair Programming: Insights from Empirical Studies." Pair Programming | Sciencx - Accessed . https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/
IEEE
" » Examining Gender Bias in Pair Programming: Insights from Empirical Studies." Pair Programming | Sciencx [Online]. Available: https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/. [Accessed: ]
rf:citation
» Examining Gender Bias in Pair Programming: Insights from Empirical Studies | Pair Programming | Sciencx | https://www.scien.cx/2024/09/15/examining-gender-bias-in-pair-programming-insights-from-empirical-studies/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.