Pad in PyTorch

Buy Me a Coffee☕

*Memos:

My post explains OxfordIIITPet().

Pad() can add padding to an image as shown below:

*Memos:

The 1st argument for initialization is padding(Required-Type:int or tuple/list(int)). *A tuple/list must be the 1D with 2 or 4…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

Pad() can add padding to an image as shown below:

*Memos:

  • The 1st argument for initialization is padding(Required-Type:int or tuple/list(int)). *A tuple/list must be the 1D with 2 or 4 elements.
  • The 2nd argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)): *Memos:
    • It can change the background of an image. *The background can be seen when adding padding for an image.
    • A tuple/list must be the 1D with 1 or 3 elements.
  • The 3rd argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import Pad

pad = Pad(padding=100)
pad = Pad(padding=100, fill=0, padding_mode='constant')

pad
# Pad(padding=100, fill=0, padding_mode=constant)

pad.padding
# 100

pad.fill
# 0

pad.padding_mode
# 'constant'

origin_data = OxfordIIITPet(
    root="data",
    transform=None
    # transform=Pad(padding=0)
)

p50_data = OxfordIIITPet( # `p` is plus.
    root="data",
    transform=Pad(padding=50)
)

p100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100)
)

p150_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=150)
)

m50_data = OxfordIIITPet( # `m` is minus.
    root="data",
    transform=Pad(padding=-50)
)

m100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=-100)
)

m150_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=-150)
)

p100p50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[100, 50])
)

m100m50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[-100, -50])
)

p100m50_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[100, -50])
)

p25p50p75p100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[25, 50, 75, 100])
)

m25m50m75m100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[-25, -50, -75, -100])
)

p25m50p75m100_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=[25, -50, 75, -100])
)

p100fgray_data = OxfordIIITPet( # `f` is fill.
    root="data",
    transform=Pad(padding=100, fill=150)
)

p100fpurple_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, fill=[160, 32, 240])
)

p100pmconst_data = OxfordIIITPet( # `pm` is padding_mode.
    root="data",                  # `const` is constant.
    transform=Pad(padding=100, padding_mode="constant")
)

p100pmedge_data = OxfordIIITPet(
    root="data",
    transform=Pad(padding=100, padding_mode="edge")
)

p100pmrefle_data = OxfordIIITPet( # `refle` is reflect.
    root="data",
    transform=Pad(padding=100, padding_mode="reflect")
)

p100pmsymme_data = OxfordIIITPet( # `symme` is symmetric.
    root="data",
    transform=Pad(padding=100, padding_mode="symmetric")
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title='origin_data')
show_images1(data=p50_data, main_title='p50_data')
show_images1(data=p100_data, main_title='p100_data')
show_images1(data=p150_data, main_title='p150_data')
print()
show_images1(data=origin_data, main_title='origin_data')
show_images1(data=m50_data, main_title='m50_data')
show_images1(data=m100_data, main_title='m100_data')
show_images1(data=m150_data, main_title='m150_data')
print()
show_images1(data=origin_data, main_title='origin_data')
show_images1(data=p100p50_data, main_title='p100p50_data')
show_images1(data=m100m50_data, main_title='m100m50_data')
show_images1(data=p100m50_data, main_title='p100m50_data')
print()
show_images1(data=origin_data, main_title='origin_data')
show_images1(data=p25p50p75p100_data, main_title='p25p50p75p100_data')
show_images1(data=m25m50m75m100_data, main_title='m25m50m75m100_data')
show_images1(data=p25m50p75m100_data, main_title='p25m50p75m100_data')
print()
show_images1(data=p100fgray_data, main_title='p100fgray_data')
show_images1(data=p100fpurple_data, main_title='p100fpurple_data')
print()
show_images1(data=p100pmconst_data, main_title='p100pmconst_data')
show_images1(data=p100pmedge_data, main_title='p100pmedge_data')
show_images1(data=p100pmrefle_data, main_title='p100pmrefle_data')
show_images1(data=p100pmsymme_data, main_title='p100pmsymme_data')

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, p=0, f=0, pm='constant'):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        pad = Pad(padding=p, fill=f, padding_mode=pm) # Here
        plt.imshow(X=pad(im)) # Here
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title='origin_data')
show_images2(data=origin_data, main_title='p50_data', p=50)
show_images2(data=origin_data, main_title='p100_data', p=100)
show_images2(data=origin_data, main_title='p150_data', p=150)
print()
show_images2(data=origin_data, main_title='origin_data')
show_images2(data=origin_data, main_title='m50_data', p=-50)
show_images2(data=origin_data, main_title='m100_data', p=-100)
show_images2(data=origin_data, main_title='m150_data', p=-150)
print()
show_images2(data=origin_data, main_title='origin_data')
show_images2(data=origin_data, main_title='p100p50_data', p=[100, 50])
show_images2(data=origin_data, main_title='m100m50_data', p=[-100, -50])
show_images2(data=origin_data, main_title='p100m50_data', p=[100, -50])
print()
show_images2(data=origin_data, main_title='origin_data')
show_images2(data=origin_data, main_title='p25p50p75p100_data',
             p=[25, 50, 75, 100])
show_images2(data=origin_data, main_title='m25m50m75m100_data',
             p=[-25, -50, -75, -100])
show_images2(data=origin_data, main_title='p25m50p75m100_data',
             p=[25, -50, 75, -100])
print()
show_images2(data=origin_data, main_title='p100fgray_data', p=100,
             f=150)
show_images2(data=origin_data, main_title='p100fpurple_data', p=100,
             f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title='p100pmconst_data', p=100, 
             pm='constant')
show_images2(data=origin_data, main_title='p100pmedge_data', p=100, 
             pm='edge')
show_images2(data=origin_data, main_title='p100pmrefle_data', p=100,
             pm='reflect')
show_images2(data=origin_data, main_title='p100pmsymme_data', p=100,
             pm='symmetric')

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-01-26T05:07:39+00:00) Pad in PyTorch. Retrieved from https://www.scien.cx/2025/01/26/pad-in-pytorch-3/

MLA
" » Pad in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Sunday January 26, 2025, https://www.scien.cx/2025/01/26/pad-in-pytorch-3/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Sunday January 26, 2025 » Pad in PyTorch., viewed ,<https://www.scien.cx/2025/01/26/pad-in-pytorch-3/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » Pad in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/01/26/pad-in-pytorch-3/
CHICAGO
" » Pad in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/01/26/pad-in-pytorch-3/
IEEE
" » Pad in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/01/26/pad-in-pytorch-3/. [Accessed: ]
rf:citation
» Pad in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/01/26/pad-in-pytorch-3/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.