RandomPosterize in PyTorch

Buy Me a Coffee☕

*Memos:

My post explains OxfordIIITPet().

RandomPosterize() can randomly posterize an image with a given probability as shown below:

*Memos:

The 1st argument for initialization is bits(Required-Type:int):
*Memos:

It’s the nu…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

RandomPosterize() can randomly posterize an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is bits(Required-Type:int): *Memos:
    • It's the number of bits to keep for each channel.
    • It must be x <= 8.
  • The 1st argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is posterized or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 2D or 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPosterize

randomposterize = RandomPosterize(bits=1)
randomposterize = RandomPosterize(bits=1, p=0.5)

randomposterize 
# RandomPosterize(p=0.5, bits=1)

randomposterize.bits
# 1

randomposterize.p
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

b8p1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=8, p=1)
)

b7p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=7, p=1)
)

b6p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=6, p=1)
)

b5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=5, p=1)
)

b4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=4, p=1)
)

b3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=3, p=1)
)

b2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=2, p=1)
)

b1p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=1, p=1)
)

b0p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=0, p=1)
)

bn1p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=-1, p=1)
)

bn10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=-10, p=1)
)

bn100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=-100, p=1)
)

b1p0_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=1, p=0)
)

b1p05_data = OxfordIIITPet(
    root="data",
    transform=RandomPosterize(bits=1, p=0.5)
    # transform=RandomPosterize(bits=1)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=b8p1origin_data, main_title="b8p1origin_data")
show_images1(data=b7p1_data, main_title="b7p1_data")
show_images1(data=b6p1_data, main_title="b6p1_data")
show_images1(data=b5p1_data, main_title="b5p1_data")
show_images1(data=b4p1_data, main_title="b4p1_data")
show_images1(data=b3p1_data, main_title="b3p1_data")
show_images1(data=b2p1_data, main_title="b2p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b0p1_data, main_title="b0p1_data")
show_images1(data=bn1p1_data, main_title="bn1p1_data")
show_images1(data=bn10p1_data, main_title="bn10p1_data")
show_images1(data=bn100p1_data, main_title="bn100p1_data")
print()
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
print()
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
print()
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=None, prob=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if b != None:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rp = RandomPosterize(bits=b, p=prob)
            plt.imshow(X=rp(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="b8p1origin_data", b=8, prob=1)
show_images2(data=origin_data, main_title="b7p1_data", b=7, prob=1)
show_images2(data=origin_data, main_title="b6p1_data", b=6, prob=1)
show_images2(data=origin_data, main_title="b5p1_data", b=5, prob=1)
show_images2(data=origin_data, main_title="b4p1_data", b=4, prob=1)
show_images2(data=origin_data, main_title="b3p1_data", b=3, prob=1)
show_images2(data=origin_data, main_title="b2p1_data", b=2, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b0p1_data", b=0, prob=1)
show_images2(data=origin_data, main_title="bn1p1_data", b=-1, prob=1)
show_images2(data=origin_data, main_title="bn10p1_data", b=-10, prob=1)
show_images2(data=origin_data, main_title="bn100p1_data", b=-100, prob=1)
print()
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
print()
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
print()
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-02-17T01:59:34+00:00) RandomPosterize in PyTorch. Retrieved from https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/

MLA
" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Monday February 17, 2025, https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Monday February 17, 2025 » RandomPosterize in PyTorch., viewed ,<https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » RandomPosterize in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
CHICAGO
" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
IEEE
" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/. [Accessed: ]
rf:citation
» RandomPosterize in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.