This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
- My post explains OxfordIIITPet().
RandomPosterize() can randomly posterize an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
bits
(Required-Type:int
): *Memos:- It's the number of bits to keep for each channel.
- It must be
x <= 8
.
- The 1st argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is posterized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomPosterize
randomposterize = RandomPosterize(bits=1)
randomposterize = RandomPosterize(bits=1, p=0.5)
randomposterize
# RandomPosterize(p=0.5, bits=1)
randomposterize.bits
# 1
randomposterize.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
b8p1origin_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=8, p=1)
)
b7p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=7, p=1)
)
b6p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=6, p=1)
)
b5p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=5, p=1)
)
b4p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=4, p=1)
)
b3p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=3, p=1)
)
b2p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=2, p=1)
)
b1p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=1)
)
b0p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=0, p=1)
)
bn1p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-1, p=1)
)
bn10p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-10, p=1)
)
bn100p1_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=-100, p=1)
)
b1p0_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0)
)
b1p05_data = OxfordIIITPet(
root="data",
transform=RandomPosterize(bits=1, p=0.5)
# transform=RandomPosterize(bits=1)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=b8p1origin_data, main_title="b8p1origin_data")
show_images1(data=b7p1_data, main_title="b7p1_data")
show_images1(data=b6p1_data, main_title="b6p1_data")
show_images1(data=b5p1_data, main_title="b5p1_data")
show_images1(data=b4p1_data, main_title="b4p1_data")
show_images1(data=b3p1_data, main_title="b3p1_data")
show_images1(data=b2p1_data, main_title="b2p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b0p1_data, main_title="b0p1_data")
show_images1(data=bn1p1_data, main_title="bn1p1_data")
show_images1(data=bn10p1_data, main_title="bn10p1_data")
show_images1(data=bn100p1_data, main_title="bn100p1_data")
print()
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
show_images1(data=b1p0_data, main_title="b1p0_data")
print()
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
show_images1(data=b1p05_data, main_title="b1p05_data")
print()
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
show_images1(data=b1p1_data, main_title="b1p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, b=None, prob=0):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if b != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rp = RandomPosterize(bits=b, p=prob)
plt.imshow(X=rp(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="b8p1origin_data", b=8, prob=1)
show_images2(data=origin_data, main_title="b7p1_data", b=7, prob=1)
show_images2(data=origin_data, main_title="b6p1_data", b=6, prob=1)
show_images2(data=origin_data, main_title="b5p1_data", b=5, prob=1)
show_images2(data=origin_data, main_title="b4p1_data", b=4, prob=1)
show_images2(data=origin_data, main_title="b3p1_data", b=3, prob=1)
show_images2(data=origin_data, main_title="b2p1_data", b=2, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b0p1_data", b=0, prob=1)
show_images2(data=origin_data, main_title="bn1p1_data", b=-1, prob=1)
show_images2(data=origin_data, main_title="bn10p1_data", b=-10, prob=1)
show_images2(data=origin_data, main_title="bn100p1_data", b=-100, prob=1)
print()
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0)
print()
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5)
print()
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.

APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-02-17T01:59:34+00:00) RandomPosterize in PyTorch. Retrieved from https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Monday February 17, 2025, https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Monday February 17, 2025 » RandomPosterize in PyTorch., viewed ,<https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » RandomPosterize in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
CHICAGO" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/
IEEE" » RandomPosterize in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/. [Accessed: ]
rf:citation » RandomPosterize in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/17/randomposterize-in-pytorch-2/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.