This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
*Memos:
- My post explains OxfordIIITPet().
AutoAugment() can randomly augment an image with AutoAugmentPolicy as shown below:
*Memos:
- The 1st argument for initialization is
policy
(Optional-Default:AutoAugmentPolicy.IMAGENET
-Type:AutoAugmentPolicy). *AutoAugmentPolicy.IMAGENET
,AutoAugmentPolicy.CIFAR10
orAutoAugmentPolicy.SVHN
can be set to it. - The 2nd argument for initialization is
interpolation
(Optional-Default:InterpolationMode.NEAREST
-Type:InterpolationMode). *If the input is a tensor, onlyInterpolationMode.NEAREST
,InterpolationMode.BILINEAR
can be set to it. - The 3rd argument for initialization is
fill
(Optional-Default:0
-Type:int
,float
ortuple
/list
(int
orfloat
)): *Memos:- It can change the background of an image.
- A tuple/list must be the 1D with 1 or 3 elements.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AutoAugment
from torchvision.transforms.v2 import AutoAugmentPolicy
from torchvision.transforms.functional import InterpolationMode
aa = AutoAugment()
aa = AutoAugment(policy=AutoAugmentPolicy.IMAGENET,
interpolation = InterpolationMode.NEAREST,
fill=None)
aa
# AutoAugment(interpolation=InterpolationMode.NEAREST,
# policy=AutoAugmentPolicy.IMAGENET)
aa.policy
# <AutoAugmentPolicy.IMAGENET: 'imagenet'>
aa.interpolation
# <InterpolationMode.NEAREST: 'nearest'>
print(aa.fill)
# None
origin_data = OxfordIIITPet(
root="data",
transform=None
)
pIMAGENET_data = OxfordIIITPet( # `p` is policy.
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET)
)
pCIFAR10_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10)
)
pSVHN_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.SVHN)
)
pIMAGENETf150_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET, fill=150)
)
pIMAGENETf160_32_240_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.IMAGENET,
fill=[160, 32, 240])
)
pCIFAR10f150_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10, fill=150)
)
pCIFAR10f160_32_240_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.CIFAR10,
fill=[160, 32, 240])
)
pSVHNf150_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.SVHN, fill=150)
)
pSVHNf160_32_240_data = OxfordIIITPet(
root="data",
transform=AutoAugment(policy=AutoAugmentPolicy.SVHN,
fill=[160, 32, 240])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
show_images1(data=pIMAGENET_data, main_title="pIMAGENET_data")
print()
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
show_images1(data=pCIFAR10_data, main_title="pCIFAR10_data")
print()
show_images1(data=pSVHN_data, main_title="pSVHN_data")
show_images1(data=pSVHN_data, main_title="pSVHN_data")
show_images1(data=pSVHN_data, main_title="pSVHN_data")
print()
show_images1(data=pIMAGENETf150_data, main_title="pIMAGENETf150_data")
show_images1(data=pIMAGENETf160_32_240_data,
main_title="pIMAGENETf160_32_240_data")
print()
show_images1(data=pCIFAR10f150_data, main_title="pCIFAR10f150_data")
show_images1(data=pCIFAR10f160_32_240_data,
main_title="pCIFAR10f160_32_240_data")
print()
show_images1(data=pSVHNf150_data, main_title="pSVHNf150_data")
show_images1(data=pSVHNf160_32_240_data,
main_title="pSVHNf160_32_240_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, p=None,
ip=InterpolationMode.NEAREST,
f=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if p != None:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
aa = AutoAugment(policy=p, interpolation=ip, fill=f)
plt.imshow(X=aa(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="pIMAGENET_data",
p=AutoAugmentPolicy.IMAGENET)
show_images2(data=origin_data, main_title="pIMAGENET_data",
p=AutoAugmentPolicy.IMAGENET)
show_images2(data=origin_data, main_title="pIMAGENET_data",
p=AutoAugmentPolicy.IMAGENET)
print()
show_images2(data=origin_data, main_title="pCIFAR10_data",
p=AutoAugmentPolicy.CIFAR10)
show_images2(data=origin_data, main_title="pCIFAR10_data",
p=AutoAugmentPolicy.CIFAR10)
show_images2(data=origin_data, main_title="pCIFAR10_data",
p=AutoAugmentPolicy.CIFAR10)
print()
show_images2(data=origin_data, main_title="pSVHN_data",
p=AutoAugmentPolicy.SVHN)
show_images2(data=origin_data, main_title="pSVHN_data",
p=AutoAugmentPolicy.SVHN)
show_images2(data=origin_data, main_title="pSVHN_data",
p=AutoAugmentPolicy.SVHN)
print()
show_images2(data=origin_data, main_title="pIMAGENETf150_data",
p=AutoAugmentPolicy.IMAGENET, f=150)
show_images2(data=origin_data, main_title="pIMAGENETf160_32_240_data",
p=AutoAugmentPolicy.IMAGENET, f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="pCIFAR10f150_data",
p=AutoAugmentPolicy.CIFAR10, f=150)
show_images2(data=origin_data, main_title="pCIFAR10f160_32_240_data",
p=AutoAugmentPolicy.CIFAR10, f=[160, 32, 240])
print()
show_images2(data=origin_data, main_title="pSVHNf150_data",
p=AutoAugmentPolicy.SVHN, f=150)
show_images2(data=origin_data, main_title="pSVHNf160_32_240_data",
p=AutoAugmentPolicy.SVHN, f=[160, 32, 240])
This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)
Print
Share
Comment
Cite
Upload
Translate
Updates
There are no updates yet.
Click the Upload button above to add an update.

APA
MLA
Super Kai (Kazuya Ito) | Sciencx (2025-02-20T23:53:31+00:00) AutoAugment in PyTorch. Retrieved from https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/
" » AutoAugment in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Thursday February 20, 2025, https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/
HARVARDSuper Kai (Kazuya Ito) | Sciencx Thursday February 20, 2025 » AutoAugment in PyTorch., viewed ,<https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/>
VANCOUVERSuper Kai (Kazuya Ito) | Sciencx - » AutoAugment in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/
CHICAGO" » AutoAugment in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/
IEEE" » AutoAugment in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/. [Accessed: ]
rf:citation » AutoAugment in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/02/20/autoaugment-in-pytorch-2/ |
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.