RandomAdjustSharpness in PyTorch

Buy Me a Coffee☕

*Memos:

My post explains OxfordIIITPet().

RandomAdjustSharpness() can randomly sharpen or blur an image with a given probability as shown below:

*Memos:

The 1st argument for initialization is sharpness_factor(Required-Type:int…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

RandomAdjustSharpness() can randomly sharpen or blur an image with a given probability as shown below:

*Memos:

  • The 1st argument for initialization is sharpness_factor(Required-Type:int or float): *Memos:
    • x < 1 gives a blurred image.
    • 1 gives an original image.
    • 1 < x gives a sharpened image.
  • The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos:
    • It's the probability of whether an image is solarized or not.
    • It must be 0 <= x <= 1.
  • The 1st argument is img(Required-Type:PIL Image or tensor(int)): *Memos:
    • A tensor must be 3D.
    • Don't use img=.
  • v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomAdjustSharpness

ras = RandomAdjustSharpness(sharpness_factor=100)
ras = RandomAdjustSharpness(sharpness_factor=100, p=0.5)

ras
# RandomAdjustSharpness(p=0.5, sharpness_factor=100)

ras.sharpness_factor
# 100

ras.p
# 0.5

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

sf1p1origin_data = OxfordIIITPet( # `sf` is sharpness_factor.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1, p=1)
)

sf2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=2, p=1)
)

sf3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=3, p=1)
)

sf4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=4, p=1)
)

sf5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=5, p=1)
)

sf10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=10, p=1)
)

sf25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=25, p=1)
)

sf50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=50, p=1)
)

sf100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=1)
)

sf1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=1000, p=1)
)

sf0p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=0, p=1)
)

sfn1p1_data = OxfordIIITPet( # `n` is negative.
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1, p=1)
)

sfn2p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-2, p=1)
)

sfn3p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-3, p=1)
)

sfn4p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-4, p=1)
)

sfn5p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-5, p=1)
)

sfn10p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-10, p=1)
)

sfn25p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-25, p=1)
)

sfn50p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-50, p=1)
)

sfn100p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-100, p=1)
)

sfn1000p1_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=-1000, p=1)
)

sf100p0_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0)
)

sf100p05_data = OxfordIIITPet(
    root="data",
    transform=RandomAdjustSharpness(sharpness_factor=100, p=0.5)
    # transform=RandomAdjustSharpness(sharpness_factor=100)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf2p1_data, main_title="sf2p1_data")
show_images1(data=sf3p1_data, main_title="sf3p1_data")
show_images1(data=sf4p1_data, main_title="sf4p1_data")
show_images1(data=sf5p1_data, main_title="sf5p1_data")
show_images1(data=sf10p1_data, main_title="sf10p1_data")
show_images1(data=sf25p1_data, main_title="sf25p1_data")
show_images1(data=sf50p1_data, main_title="sf50p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf1000p1_data, main_title="sf1000p1_data")
print()
show_images1(data=sf1p1origin_data, main_title="sf1p1origin_data")
show_images1(data=sf0p1_data, main_title="sf0p1_data")
show_images1(data=sfn1p1_data, main_title="sfn1p1_data")
show_images1(data=sfn2p1_data, main_title="sfn2p1_data")
show_images1(data=sfn3p1_data, main_title="sfn3p1_data")
show_images1(data=sfn4p1_data, main_title="sfn4p1_data")
show_images1(data=sfn5p1_data, main_title="sfn5p1_data")
show_images1(data=sfn10p1_data, main_title="sfn10p1_data")
show_images1(data=sfn25p1_data, main_title="sfn25p1_data")
show_images1(data=sfn50p1_data, main_title="sfn50p1_data")
show_images1(data=sfn100p1_data, main_title="sfn100p1_data")
show_images1(data=sfn1000p1_data, main_title="sfn1000p1_data")
print()
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
show_images1(data=sf100p0_data, main_title="sf100p0_data")
print()
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
show_images1(data=sf100p05_data, main_title="sf100p05_data")
print()
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")
show_images1(data=sf100p1_data, main_title="sf100p1_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, sf=None, prob=0.5):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            rs = RandomAdjustSharpness(sharpness_factor=sf, p=prob)
            plt.imshow(X=rs(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf2p1_data", sf=2, prob=1)
show_images2(data=origin_data, main_title="sf3p1_data", sf=3, prob=1)
show_images2(data=origin_data, main_title="sf4p1_data", sf=4, prob=1)
show_images2(data=origin_data, main_title="sf5p1_data", sf=5, prob=1)
show_images2(data=origin_data, main_title="sf10p1_data", sf=10, prob=1)
show_images2(data=origin_data, main_title="sf25p1_data", sf=25, prob=1)
show_images2(data=origin_data, main_title="sf50p1_data", sf=50, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf1000p1_data", sf=1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf1p1origin_data", sf=1, prob=1)
show_images2(data=origin_data, main_title="sf0p1_data", sf=0, prob=1)
show_images2(data=origin_data, main_title="sfn1p1_data", sf=-1, prob=1)
show_images2(data=origin_data, main_title="sfn2p1_data", sf=-2, prob=1)
show_images2(data=origin_data, main_title="sfn3p1_data", sf=-3, prob=1)
show_images2(data=origin_data, main_title="sfn4p1_data", sf=-4, prob=1)
show_images2(data=origin_data, main_title="sfn5p1_data", sf=-5, prob=1)
show_images2(data=origin_data, main_title="sfn10p1_data", sf=-10, prob=1)
show_images2(data=origin_data, main_title="sfn25p1_data", sf=-25, prob=1)
show_images2(data=origin_data, main_title="sfn50p1_data", sf=-50, prob=1)
show_images2(data=origin_data, main_title="sfn100p1_data", sf=-100, prob=1)
show_images2(data=origin_data, main_title="sfn1000p1_data", sf=-1000, prob=1)
print()
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
show_images2(data=origin_data, main_title="sf100p0_data", sf=100, prob=0)
print()
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
show_images2(data=origin_data, main_title="sf100p05_data", sf=100, prob=0.5)
print()
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)
show_images2(data=origin_data, main_title="sf100p1_data", sf=100, prob=1)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-03-11T15:04:28+00:00) RandomAdjustSharpness in PyTorch. Retrieved from https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/

MLA
" » RandomAdjustSharpness in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Tuesday March 11, 2025, https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Tuesday March 11, 2025 » RandomAdjustSharpness in PyTorch., viewed ,<https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » RandomAdjustSharpness in PyTorch. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/
CHICAGO
" » RandomAdjustSharpness in PyTorch." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/
IEEE
" » RandomAdjustSharpness in PyTorch." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/. [Accessed: ]
rf:citation
» RandomAdjustSharpness in PyTorch | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/03/11/randomadjustsharpness-in-pytorch/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.