ElasticTransform in PyTorch (4)

Buy Me a Coffee☕

*Memos:

My post explains ElasticTransform() about no arguments.

My post explains ElasticTransform() about alpha and fill argument.

My post explains ElasticTransform() about sigma and fill argument.

ElasticTransform() can do ran…


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)

Buy Me a Coffee

*Memos:

ElasticTransform() can do random morphological transformation for an image as shown below. *It's about alpha and sigma argument:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import ElasticTransform
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

a0s01_data = OxfordIIITPet( # `a` is alpha and `s` is sigma.
    root="data",
    transform=ElasticTransform(alpha=0, sigma=0.1)
    # transform=ElasticTransform(alpha=[0, 0], sigma=[0.1, 0.1])
)

a0s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=1)
)

a0s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=10)
)

a0s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=0, sigma=40)
)

a10s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=0.1)
    # transform=ElasticTransform(alpha=-10, sigma=0.1)
)

a10s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=1)
)

a10s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=10)
)

a10s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10, sigma=40)
)

a100s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=0.1)
    # transform=ElasticTransform(alpha=-100, sigma=0.1)
)

a100s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=1)
)

a100s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=10)
)

a100s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=100, sigma=40)
)

a1000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=0.1)
    # transform=ElasticTransform(alpha=-1000, sigma=0.1)
)

a1000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=1)
)

a1000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=10)
)

a1000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=1000, sigma=40)
)

a10000s01_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=0.1)
    # transform=ElasticTransform(alpha=-10000, sigma=0.1)
)

a10000s1_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=1)
)

a10000s10_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=10)
)

a10000s40_data = OxfordIIITPet(
    root="data",
    transform=ElasticTransform(alpha=10000, sigma=40)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=a0s01_data, main_title="a0s01_data")
show_images1(data=a0s1_data, main_title="a0s1_data")
show_images1(data=a0s10_data, main_title="a0s10_data")
show_images1(data=a0s40_data, main_title="a0s40_data")
print()
show_images1(data=a10s01_data, main_title="a10s01_data")
show_images1(data=a10s1_data, main_title="a10s1_data")
show_images1(data=a10s10_data, main_title="a10s10_data")
show_images1(data=a10s40_data, main_title="a10s40_data")
print()
show_images1(data=a100s01_data, main_title="a100s01_data")
show_images1(data=a100s1_data, main_title="a100s1_data")
show_images1(data=a100s10_data, main_title="a100s10_data")
show_images1(data=a100s40_data, main_title="a100s40_data")
print()
show_images1(data=a1000s01_data, main_title="a1000s01_data")
show_images1(data=a1000s1_data, main_title="a1000s1_data")
show_images1(data=a1000s10_data, main_title="a1000s10_data")
show_images1(data=a1000s40_data, main_title="a1000s40_data")
print()
show_images1(data=a10000s01_data, main_title="a10000s01_data")
show_images1(data=a10000s1_data, main_title="a10000s1_data")
show_images1(data=a10000s10_data, main_title="a10000s10_data")
show_images1(data=a10000s40_data, main_title="a10000s40_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, a=50, s=5, 
                 ip=InterpolationMode.BILINEAR, f=0):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            et = ElasticTransform(alpha=a, sigma=s,
                                  interpolation=ip, fill=f)
            plt.imshow(X=et(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="a0s01_data", a=0, s=0.1)
show_images2(data=origin_data, main_title="a0s1_data", a=0, s=1)
show_images2(data=origin_data, main_title="a0s10_data", a=0, s=10)
show_images2(data=origin_data, main_title="a0s40_data", a=0, s=40)
print()
show_images2(data=origin_data, main_title="a10s01_data", a=10, s=0.1)
show_images2(data=origin_data, main_title="a10s1_data", a=10, s=1)
show_images2(data=origin_data, main_title="a10s10_data", a=10, s=10)
show_images2(data=origin_data, main_title="a10s40_data", a=10, s=40)
print()
show_images2(data=origin_data, main_title="a100s01_data", a=100, s=0.1)
show_images2(data=origin_data, main_title="a100s1_data", a=100, s=1)
show_images2(data=origin_data, main_title="a100s10_data", a=100, s=10)
show_images2(data=origin_data, main_title="a100s40_data", a=100, s=40)
print()
show_images2(data=origin_data, main_title="a1000s01_data", a=1000, s=0.1)
show_images2(data=origin_data, main_title="a1000s1_data", a=1000, s=1)
show_images2(data=origin_data, main_title="a1000s10_data", a=1000, s=10)
show_images2(data=origin_data, main_title="a1000s40_data", a=1000, s=40)
print()
show_images2(data=origin_data, main_title="a10000s01_data", a=10000, s=0.1)
show_images2(data=origin_data, main_title="a10000s1_data", a=10000, s=1)
show_images2(data=origin_data, main_title="a10000s10_data", a=10000, s=10)
show_images2(data=origin_data, main_title="a10000s40_data", a=10000, s=40)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description


This content originally appeared on DEV Community and was authored by Super Kai (Kazuya Ito)


Print Share Comment Cite Upload Translate Updates
APA

Super Kai (Kazuya Ito) | Sciencx (2025-03-14T23:59:12+00:00) ElasticTransform in PyTorch (4). Retrieved from https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/

MLA
" » ElasticTransform in PyTorch (4)." Super Kai (Kazuya Ito) | Sciencx - Friday March 14, 2025, https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/
HARVARD
Super Kai (Kazuya Ito) | Sciencx Friday March 14, 2025 » ElasticTransform in PyTorch (4)., viewed ,<https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/>
VANCOUVER
Super Kai (Kazuya Ito) | Sciencx - » ElasticTransform in PyTorch (4). [Internet]. [Accessed ]. Available from: https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/
CHICAGO
" » ElasticTransform in PyTorch (4)." Super Kai (Kazuya Ito) | Sciencx - Accessed . https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/
IEEE
" » ElasticTransform in PyTorch (4)." Super Kai (Kazuya Ito) | Sciencx [Online]. Available: https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/. [Accessed: ]
rf:citation
» ElasticTransform in PyTorch (4) | Super Kai (Kazuya Ito) | Sciencx | https://www.scien.cx/2025/03/14/elastictransform-in-pytorch-4/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.