This content originally appeared on DEV Community and was authored by Alkesh Ghorpade
Problem statement
Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
Problem statement taken from: https://leetcode.com/problems/binary-tree-level-order-traversal
Example 1:
Input: root = [3, 9, 20, null, null, 15, 7]
Output: [[3], [9, 20], [15, 7]]
Example 2:
Input: root = [1]
Output: [[1]]
Example 3:
Input: root = []
Output: []
Constraints:
- The number of nodes in the tree is in the range [0, 2000]
- -1000 <= Node.val <= 1000
Explanation
Recursive function
With trees, recursion is the most widely used approach as the code is easy to read. But for a few problems, recursion increases the time complexity. For large trees, recursion can result in stack overflow or because of O(N^2) time complexity will take a lot of time.
For this problem, we can use recursion, but we need to calculate the height of the tree.
A small C++ snippet of the above approach will look as below:
void printLevelOrder(node* root){
int h = height(root);
for (int i = 0; i < h; i++)
printCurrentLevel(root, i);
}
void printLevel(node* root, int level){
if (root == NULL)
return;
if (level == 0)
cout << root->data << " ";
else if (level > 0) {
printLevel(root->left, level - 1);
printLevel(root->right, level - 1);
}
}
The time complexity of the above approach is O(N^2) for skewed trees. The worst-case space complexity is O(N).
Iterative approach
We can improve the time complexity by using a queue as a data structure. Let's check the algorithm.
- initialize 2D array as vector vector<vector<int>> result
- initialize size and i
- return result if root == null
- initialize queue<TreeNode*> q
- push root to queue : q.push(root)
- initialize TreeNode* node for iterating on the tree
- loop while( !q.empty() ) // queue is not empty
- initialize vector<int> tmp
- set size = q.size()
- loop for i = 0; i < size; i++
- set node = q.front()
- if node->left
- push in queue: q.push(node->left)
- if node->right
- push in queue: q.push(node->right)
- remove the front node: q.pop()
- push the tmp to result: result.push_back(tmp)
- return result
C++ solution
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> result;
int size, i;
if(root == NULL)
return result;
queue<TreeNode*> q;
q.push(root);
TreeNode* node;
while(!q.empty()){
vector<int> tmp;
size = q.size();
for(i = 0; i < size; i++){
node = q.front();
if(node->left)
q.push(node->left);
if(node->right)
q.push(node->right);
q.pop();
tmp.push_back(node->val);
}
result.push_back(tmp);
}
return result;
}
};
Golang solution
func levelOrder(root *TreeNode) [][]int {
result := [][]int{}
queue := []*TreeNode{root}
for len(queue) != 0 {
tmp := []int{}
size := len(queue)
for i := 0; i < size; i++ {
if queue[0] != nil {
tmp = append(tmp, queue[0].Val)
queue = append(queue, queue[0].Left)
queue = append(queue, queue[0].Right)
}
queue = queue[1:]
}
result = append(result, tmp)
}
return result[:len(result)-1]
}
Javascript solution
var levelOrder = function(root) {
let result = [];
let queue = [];
if(root)
queue.push(root);
while(queue.length > 0) {
tmp = [];
let len = queue.length;
for (let i = 0; i< len; i++) {
let node = queue.shift();
tmp.push(node.val);
if(node.left) {
queue.push(node.left);
}
if(node.right) {
queue.push(node.right);
}
}
result.push(tmp);
}
return result;
};
Let's dry-run our algorithm to see how the solution works.
Input: root = [3, 9, 20, null, null, 15, 7]
Step 1: vector<vector<int>> result;
int size, i;
Step 2: root == null
[3, 9..] == null
false
Step 3: queue<TreeNode*> q;
q.push(root);
q = [3]
Step 4: loop !q.empty()
q = [3]
q.empty() = false
!false = true
vector<int> tmp
size = q.size()
= 1
for(i = 0; i < 1; i++)
- 0 < 1
- true
node = q.front()
node = 3
if node->left
- node->left = 9
- q.push(node->left)
- q = [3, 9]
if node->right
- node->right = 20
- q.push(node->right)
- q = [3, 9, 20]
q.pop()
q = [9, 20]
tmp.push_back(node->val)
tmp.push_back(3)
i++
i = 1
for(i < 1)
1 < 1
false
result.push_back(tmp)
result = [[3]]
Step 5: loop !q.empty()
q = [9, 20]
q.empty() = false
!false = true
vector<int> tmp
size = q.size()
= 2
for(i = 0; i < 2; i++)
- 0 < 2
- true
node = q.front()
node = 9
if node->left
- node->left = nil
- false
if node->right
- node->right = nil
- false
q.pop()
q = [20]
tmp.push_back(node->val)
tmp.push_back(9)
i++
i = 1
for(i < 2)
- 1 < 2
- true
node = q.front()
node = 20
if node->left
- node->left = 15
- q.push(node->left)
- q = [20, 15]
if node->right
- node->left = 7
- q.push(node->right)
- q = [20, 15, 7]
q.pop()
q = [15, 7]
tmp.push_back(node->val)
tmp.push_back(20)
tmp = [9, 20]
i++
i = 2
for(i < 2)
- 2 < 2
- false
result.push_back(tmp)
result = [[3], [9, 20]]
Step 6: loop !q.empty()
q = [15, 7]
q.empty() = false
!false = true
vector<int> tmp
size = q.size()
= 2
for(i = 0; i < 2; i++)
- 0 < 2
- true
node = q.front()
node = 15
if node->left
- node->left = nil
- false
if node->right
- node->right = nil
- false
q.pop()
q = [7]
tmp.push_back(node->val)
tmp.push_back(15)
i++
i = 1
for(i < 2)
- 1 < 2
- true
node = q.front()
node = 7
if node->left
- node->left = nil
- false
if node->right
- node->right = nil
- false
q.pop()
q = []
tmp.push_back(node->val)
tmp.push_back(7)
tmp = [15, 7]
i++
i = 2
for(i < 2)
- 2 < 2
- false
result.push_back(tmp)
result = [[3], [9, 20], [15, 7]]
Step 7: loop !q.empty()
q = []
q.empty() = true
!true = false
Step 8: return result
So we return the result as [[3], [9, 20], [15, 7]].
This content originally appeared on DEV Community and was authored by Alkesh Ghorpade
Alkesh Ghorpade | Sciencx (2021-11-18T18:28:32+00:00) LeetCode – Binary Tree Level Order Traversal. Retrieved from https://www.scien.cx/2021/11/18/leetcode-binary-tree-level-order-traversal/
Please log in to upload a file.
There are no updates yet.
Click the Upload button above to add an update.