Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References

“The study showcases the potential of large language models, fine-tuned as retrievers and rerankers, to create efficient and state-of-the-art retrieval systems, surpassing previous methods in effectiveness and optimization.


This content originally appeared on HackerNoon and was authored by Writings, Papers and Blogs on Text Models

:::info Authors:

(1) Xueguang Ma, David R. Cheriton School of Computer Science, University of Waterloo;

(2) Liang Wang, Microsoft Research;

(3) Nan Yang, Microsoft Research;

(4) Furu Wei, Microsoft Research;

(5) Jimmy Lin, David R. Cheriton School of Computer Science, University of Waterloo.

:::

Abstract and Introduction

Method

Experiments

Ablation Study and Analysis

Related Work

Conclusion, Acknowledgements and References

6 Conclusion

The successful application of large language models in generative tasks has sparked interest in their potential to enhance retrieval. In this study, we demonstrate that it is possible to fine-tune a large model to act as a dense retriever (RepLLaMA) and a pointwise reranker (RankLLaMA), thereby establishing an effective, state-of-the-art multi-stage retrieval system that outperforms smaller models built on the same basic design. Moreover, our approach offers greater optimization and efficient inference potential than recent methods that prompt large language models for text reranking in a generative manner. This work underscores the potential of leveraging LLMs for retrieval tasks in the future, which we continue to explore.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

\

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2016. MS MARCO: A human generated machine reading comprehension dataset. arXiv:1611.09268.

\ B. Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao, Zhaohui Zheng, and Jon Degenhardt. 2010. Early exit optimizations for additive machine learned ranking systems. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM ’10, page 411–420, New York, NY, USA. Association for Computing Machinery.

\ Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to answer opendomain questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879, Vancouver, Canada. Association for Computational Linguistics.

\ Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large language models trained on code. arXiv:2107.03374.

\ Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440– 8451, Online. Association for Computational Linguistics.

\ Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview of the TREC 2020 deep learning track. arXiv:2102.07662.

\ Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M. Voorhees. 2020. Overview of the TREC 2019 deep learning track. arXiv:2003.07820.

\ Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with contextual neural language modeling. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19, page 985–988, New York, NY, USA. Association for Computing Machinery.

\ Tri Dao. 2023. FlashAttention-2: Faster attention with better parallelism and work partitioning. arXiv:2307.08691.

\ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics

\ Luyu Gao and Jamie Callan. 2022a. Long document re-ranking with modular re-ranker. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22, page 2371–2376, New York, NY, USA. Association for Computing Machinery.

\ Luyu Gao and Jamie Callan. 2022b. Unsupervised corpus aware language model pre-training for dense passage retrieval. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2843–2853, Dublin, Ireland. Association for Computational Linguistics.

\ Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink training of BERT rerankers in multi-stage retrieval pipeline. In Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 – April 1, 2021, Proceedings, Part II, page 280–286, Berlin, Heidelberg. Springer-Verlag.

\ Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-rank adaptation of large language models. In International Conference on Learning Representations.

\ Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active retrieval augmented generation. arXiv:2305.06983.

\ Ehsan Kamalloo, Xinyu Zhang, Odunayo Ogundepo, Nandan Thakur, David Alfonso-hermelo, Mehdi Rezagholizadeh, and Jimmy Lin. 2023. Evaluating embedding APIs for information retrieval. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track), pages 518–526, Toronto, Canada. Association for Computational Linguistics.

\ Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for opendomain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781, Online. Association for Computational Linguistics.

\ Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020a. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

\ Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020b. Retrieval-augmented generation for knowledgeintensive NLP tasks. In Advances in Neural Information Processing Systems, volume 33, pages 9459– 9474. Curran Associates, Inc.

\ Jimmy Lin. 2021. A proposed conceptual framework for a representational approach to information retrieval. arXiv:2110.01529.

\ Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, JhengHong Yang, Ronak Pradeep, and Rodrigo Nogueira. 2021. Pyserini: A Python toolkit for reproducible information retrieval research with sparse and dense representations. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’21, page 2356–2362, New York, NY, USA. Association for Computing Machinery.

\ Jimmy Lin, Ronak Pradeep, Tommaso Teofili, and Jasper Xian. 2023. Vector search with OpenAI embeddings: Lucene is all you need. arXiv:2308.14963.

\ Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692.

\ Xueguang Ma, Xinyu Crystina Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-shot listwise document reranking with a large language model. arXiv:2305.02156.

\ Yu A. Malkov and D. A. Yashunin. 2020. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4):824–836.

\ Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong. 2006. High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’06, page 437–444, New York, NY, USA. Association for Computing Machinery.

\ Niklas Muennighoff. 2022. SGPT: GPT sentence embeddings for semantic search. arXiv:2202.08904.

\ Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter Welinder, and Lilian Weng. 2022. Text and code embeddings by contrastive pre-training. arXiv:2201.10005.

\ Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022. Large dual encoders are generalizable retrievers. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9844–9855, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

\ Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage re-ranking with BERT. arXiv:1901.04085.

\ Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document ranking with a pretrained sequence-to-sequence model. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 708–718, Online. Association for Computational Linguistics.

\ Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage document ranking with BERT. arXiv:1910.14424.

\ OpenAI. 2023. GPT-4 technical report. arXiv:2303.08774.

\ Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. 2022. Training language models to follow instructions with human feedback. arXiv:2203.02155.

\ Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel. 2021. KILT: a benchmark for knowledge intensive language tasks. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2523–2544, Online. Association for Computational Linguistics.

\ Ronak Pradeep, Yuqi Liu, Xinyu Zhang, Yilin Li, Andrew Yates, and Jimmy Lin. 2022. Squeezing water from a stone: A bag of tricks for further improving cross-encoder effectiveness for reranking. In Advances in Information Retrieval, pages 655–670, Cham. Springer International Publishing.

\ Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The expando-mono-duo design pattern for text ranking with pretrained sequence-to-sequence models. arXiv:2101.05667.

\ Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna: Zero-shot listwise document reranking with open-source large language models. arXiv:2309.15088.

\ Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. 2023. Large language models are effective text rankers with pairwise ranking prompting. arXiv:2306.17563.

\ Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An optimized training approach to dense passage retrieval for opendomain question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5835–5847, Online. Association for Computational Linguistics.

\ Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

\ Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.

\ Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

\ Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and Wen tau Yih. 2023. REPLUG: Retrieval-augmented black-box language models. arXiv:2301.12652.

\ Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT good at search? Investigating large language models as re-ranking agent. arXiv:2304.09542.

\ Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. 2021. BEIR: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

\ James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana. Association for Computational Linguistics.

\ Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023a. LLaMA: Open and efficient foundation language models. arXiv:2302.13971.

\ Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288.

\ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc

\ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. 2023. SimLM: Pre-training with representation bottleneck for dense passage retrieval. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2244–2258, Toronto, Canada. Association for Computational Linguistics.

\ Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model for efficient ranked retrieval. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’11, page 105–114, New York, NY, USA. Association for Computing Machinery.

\ Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large language models. arXiv:2201.11903.

\ Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-training retrieval-oriented language models via masked auto-encoder. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 538–548, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

\ Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

\ Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and Furu Wei. 2023. Inference with reference: Lossless acceleration of large language models. arXiv:2304.04487

\ Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Z. Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun Nie, and Ji rong Wen. 2023. A survey of large language models. arXiv:2303.18223.

\ Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and Michael Bendersky. 2023. RankT5: Fine-tuning T5 for text ranking with ranking losses. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, page 2308–2313, New York, NY, USA. Association for Computing Machinery.

\

:::info This paper is available on arxiv under CC 4.0 license.

:::

\


This content originally appeared on HackerNoon and was authored by Writings, Papers and Blogs on Text Models


Print Share Comment Cite Upload Translate Updates
APA

Writings, Papers and Blogs on Text Models | Sciencx (2024-07-05T16:10:08+00:00) Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References. Retrieved from https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/

MLA
" » Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References." Writings, Papers and Blogs on Text Models | Sciencx - Friday July 5, 2024, https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/
HARVARD
Writings, Papers and Blogs on Text Models | Sciencx Friday July 5, 2024 » Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References., viewed ,<https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/>
VANCOUVER
Writings, Papers and Blogs on Text Models | Sciencx - » Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References. [Internet]. [Accessed ]. Available from: https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/
CHICAGO
" » Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References." Writings, Papers and Blogs on Text Models | Sciencx - Accessed . https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/
IEEE
" » Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References." Writings, Papers and Blogs on Text Models | Sciencx [Online]. Available: https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/. [Accessed: ]
rf:citation
» Fine-Tuning LLaMA for Multi-Stage Text Retrieval: Conclusion, Acknowledgements and References | Writings, Papers and Blogs on Text Models | Sciencx | https://www.scien.cx/2024/07/05/fine-tuning-llama-for-multi-stage-text-retrieval-conclusion-acknowledgements-and-references/ |

Please log in to upload a file.




There are no updates yet.
Click the Upload button above to add an update.

You must be logged in to translate posts. Please log in or register.